{
"cells": [
{
"cell_type": "markdown",
"id": "a45be4b8",
"metadata": {},
"source": [
"# Chapter 12: Modeling categorical relationships"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2c107588",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import sidetable\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy.stats import norm, t, binom, chi2\n",
"import pingouin as pg\n",
"import matplotlib\n",
"\n",
"import rpy2.robjects as ro\n",
"from rpy2.robjects.packages import importr\n",
"from rpy2.robjects import pandas2ri\n",
"pandas2ri.activate()\n",
"from rpy2.robjects.conversion import localconverter\n",
"%load_ext rpy2.ipython\n",
"\n",
"# import NHANES package\n",
"base = importr('NHANES')\n",
"\n",
"with localconverter(ro.default_converter + pandas2ri.converter):\n",
" NHANES = ro.conversion.rpy2py(ro.r['NHANES'])\n",
"\n",
" \n",
"NHANES = NHANES.drop_duplicates(subset='ID')\n",
"NHANES_adult = NHANES.dropna(subset=['Weight']).query('Age > 17 and BPSysAve > 0')\n",
"\n",
"rng = np.random.default_rng(123456)\n"
]
},
{
"cell_type": "markdown",
"id": "418f71a7",
"metadata": {},
"source": [
"## Table 12.1\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0aee7fd3",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Candy Type | \n",
" Count | \n",
" nullExpectation | \n",
" squaredDifference | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" chocolate | \n",
" 30 | \n",
" 33.333333 | \n",
" 11.111111 | \n",
"
\n",
" \n",
" 1 | \n",
" licorice | \n",
" 33 | \n",
" 33.333333 | \n",
" 0.111111 | \n",
"
\n",
" \n",
" 2 | \n",
" gumball | \n",
" 37 | \n",
" 33.333333 | \n",
" 13.444444 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Candy Type Count nullExpectation squaredDifference\n",
"0 chocolate 30 33.333333 11.111111\n",
"1 licorice 33 33.333333 0.111111\n",
"2 gumball 37 33.333333 13.444444"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"candyDf = pd.DataFrame({'Candy Type': [\"chocolate\", \"licorice\", \"gumball\"],\n",
" 'Count': [30, 33, 37]})\n",
"candyDf['nullExpectation'] = [candyDf.Count.sum() / 3] * 3\n",
"candyDf['squaredDifference'] = (candyDf.Count - candyDf.nullExpectation) ** 2\n",
"\n",
"candyDf"
]
},
{
"cell_type": "markdown",
"id": "4ba5367a",
"metadata": {},
"source": [
"## Figure 12.1"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "92145a4e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.7399999999999999"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chisqVal = np.sum(candyDf.squaredDifference / candyDf.nullExpectation)\n",
"chisqVal"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "da04cb02",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAINCAYAAABCnz5fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdoG8Hv6ZJKZ9F4h1NBC7wKCoqJiXdsniF1hLawNC+q6iq4r4iqKuirWFRvqiqKIVAktIXQICSEJ6b1Opn9/DDMQSEKSKWfK/buuXNcyOXPOncB65jnv+z6vyGKxWEBEREREREREghMLHYCIiIiIiIiIrFikExEREREREXkIFulEREREREREHoJFOhEREREREZGHYJFORERERERE5CFYpBMRERERERF5CBbpRERERERERB6CRToRERERERGRh5AKHcDdzGYzSkpKoFarIRKJhI5DREQEi8WCxsZGxMXFQSzm83Nn4P2eiIg8SXfu9X5XpJeUlCAxMVHoGEREROcoKipCQkKC0DF8Au/3RETkibpyr/e7Il2tVgOw/nI0Go3AaYiIiICGhgYkJiba71HkON7viYjIk3TnXu93RbptyptGo+FNm4iIPAqnZTsP7/dEROSJunKv58I3IiIiIiIiIg/BIp2IiIiIiIjIQ7BIJyIiIiIiIvIQfrcmnYiIPI/FYoHRaITJZBI6iktIJBJIpVKuOSciIqLzYpFORESC0uv1KC0tRUtLi9BRXEqlUiE2NhZyuVzoKEREROTBWKQTEZFgzGYz8vPzIZFIEBcXB7lc7nOjzRaLBXq9HpWVlcjPz0ffvn0hFnO1GREREbWPRToREQlGr9fDbDYjMTERKpVK6DguExAQAJlMhoKCAuj1eiiVSqEjERERkYfio3wiIhKcP4ws+8PPSERERI7jJwYiIiIiIiIiD8EinYiIiIiIiMhDsEgnIiK/M3XqVDz00EMAgJaWFlx77bXQaDQQiUSoq6sTNBsRERH5NzaOIyIiv/bxxx9jy5Yt2LZtGyIiIhAcHCx0JCIiIvJjLNKJiMiv5eXlYeDAgRg8eLDQUYiIiIiEne6+efNmXHHFFYiLi4NIJML3339/3vds3LgRI0aMgEKhQJ8+fbBy5UqX5yQiIu/V3NyMOXPmICgoCLGxsXjttdfs35s6dSpee+01bN68GSKRCFOnThUuKBEREREELtKbm5sxbNgwLF++vEvH5+fnY9asWZg2bRqys7Px0EMP4c4778Svv/7q4qREROStHn30UWzatAk//PADfvvtN2zcuBFZWVkAgO+++w533XUXxo8fj9LSUnz33XcCpyUiIiJ/J+h090svvRSXXnppl49fsWIFevXqZR8FGThwILZu3YrXX38dM2fOdFVMIiLyUk1NTfjggw/w2WefYfr06QCsa9ATEhIAAGFhYVCpVJDL5YiJiREyKhEREREAL+vunpGRgRkzZrR5bebMmcjIyBAkz5GyBqw9UIqjZY2CXL8jNc16oSN4pT2FtdiUU4ncikYYTGah4xCRE+Tl5UGv12Ps2LH218LCwtC/f38BUxERERF1zKuK9LKyMkRHR7d5LTo6Gg0NDdBqte2+R6fToaGhoc2Xs6z88wTu/SwL720+7rRzOqKkTovbV+7C2Jd+R73WAAB49dcj+Pf6Yyw6z1JSp8U/1x7Bx9tO2F9b9vsxzP1wJ2Ys3Yyl63Lsr1ssFgESEhERERGRP/KqIr0nlixZguDgYPtXYmKi0859rKIJAHCgpN5p53REoFyK4lotjGYL9hTWoqKhFe9vzsfSdTlYf7hC6Hgeob7FgKe/348L/rkBb2/Mw2fbC+zf6xMVhAExagQppJiQGg4AaNYZcekbW/D9nmKYzSzWibxNamoqZDIZduzYYX+ttrYWOTk5nbyLyP+YTCbk5OTYv0wmk9CRiIj8lldtwRYTE4Py8vI2r5WXl0Oj0SAgIKDd9yxatAgLFy60/7mhocFphbpKLgEAaPVGp5yvp0rrtWjWGdEnSo1P7hiDZp0RvSODYDZb8M/rhmJ3QQ1mDrLOQDCbLRCLRYLmFcrWY1V4aFU2qpp0AIDxvcNx89gkWCwWiEQiPHN5GgDr78hWjv+0rwRHyhrx0KpsfLa9AEv/ko6kcJVAPwERdVdQUBDuuOMOPProowgPD0dUVBSeeuopiMU+/4yaqFvy8vJw1/I1CIqIQ1NVCd6fPwv9+vUTOhYRkV/yqiJ9/Pjx+Pnnn9u8tm7dOowfP77D9ygUCigUCpfksRXpLXrhnjZbLBYsXLUX+4vr8e6tIzGxT4T9e2KxCFcNj8dVw+NhNluwdN1RHC1rxIr/G+l3hXpZfStuX7kLepMZvSMD8eJVQzD+1Gj52c783cxOj0dVkx5vb8jF7oJaXPrGZrxy3VBcPjTOXdGJyEGvvvoqmpqacMUVV0CtVuNvf/sb6us9YwYUkScJioiDOjpJ6BhERH5P0CK9qakJubm59j/n5+cjOzsbYWFhSEpKwqJFi1BcXIxPPvkEAHDvvffirbfewmOPPYbbb78df/zxB7766iusWbNGkPyBcuuvT8givV5rQKvRBKPZjITQ9mcTAMDxqia8u/k49EYzfj9cjosH+VcX45hgJR67pD8OlzbixasHQymTdOl9SpkE86f1wZXD4rDwq2zsOlGLBV/sgd5oxjUjElycmoicISgoCJ9++ik+/fRT+2uPPvqo/X8vW7ZMgFRERERE7RO0SN+9ezemTZtm/7NtWvrcuXOxcuVKlJaWorCw0P79Xr16Yc2aNXj44YfxxhtvICEhAf/5z38E234twD7d3QST2QKJAKPTISo5vr13Ag6XNSA5PLDD4/pEqbHk6iFQyMS4KC26w+N8zUd/5mPWkFhEaZS4Y1IvAIBI1P2/p8QwFb68ezxe+vkwfj9cjqn9o5wdlYiIyOPU1tZi9erVyM/PR1xcHK666irExsYKHYuIyKcJWqRPnTq1087ZK1eubPc9e/bscWGqrrNNd7cAqG3RIyLINdPqO/K/vSXQGky4eng8BsUFn/f4a0daR34NJjPWHSrDpYNjelSweosvdxbi+f8dwmfbC7DmgcldHj3viERsXbf+4Iy+0ChlAIDtx6sxJiXM75YPEBGR9zOZTMjLywNgnc149keyzz77DAsWLGizPOTBBx/EM888gyeffBISiWP3VSIiah875zjgzMKsslHn1msbTWa8/MsRPPbNPnyXdbJb77vyrT9x/+dZPt3x/Vh5I57+/gAA4IphcQ4X6GeyFehf7CjEje9tx0s/H3bauYmIiNzF1izu4VV78PTnG6FrbbV/b+XKlbj11ltRX1+PtLQ03HfffRg3bhwMBgMWL16M//u//4PRKGzjXCIiX8Ui3QlEsI6ku5PBZMHNY5MwLDEEs9Pju/w+qUSMKf0iER4oR6vRd7dX6RMVhEdn9sdV6XF4cHpfl1xDIbX+3+c/W/PxacYJl1yDiIjIlWzN4lShp5dxVR7LxpIlSwAAjz32GPbu3Yu3334b27Ztw8qVKyGTyfDll1+22T2HiIicx6u6u3saEawj6fMmpmBCasR5jnauALm1odn8aX26/d4FF/bB/dNS7SPCvsRiscBktkAqEeOeKan27dVc4dqRCShraMV/dxZ22CmeiIjIm+ia6rD3u7cBWBv2vvzyy/b7qEgkwty5c6FWq3HttdfizTffxIQJE3DjjTcKGZmIyOdwJN0J3L2uu7yhFfd9lomNR3s2XT1IIYVGKcPuEzV44tt9MJk77gvgbT7bUYi/vJuBopoWAK7/u7l/aip+fnAy+kSpAaDTHgtERESe7sD/PoC+uQF9+/bF66+/3u599JprrsFTTz0FAPjrX/+KyspKd8ckIvJpLNIdIFTPtf/tLcEvB8rw5h+55z+4A60GE+78ZDe+3FWENftLnZhOOOUNrXjllyPIKqzD+sPlbrmmSCSyz0j4IbsY163IgFbALfmIiIh6qrm6BHmbvwcAPP3001AqlW2+bzKZkJOTg5ycHNx4440YMmQIqqqq8NhjjwmQlojId7FId4JVu4rwyNd73Xa9CakRuGtyL9w6LrnH51DKJLh3SipuHJ2I9IQQ54UT0N9/OoQmnRHDEkNw6/gUt167sdWAF346jMyCWjzzwwG3XpuIiMgZCrf/AovZhKh+IxAdHW0vyE0m68PnMxvNzX9/HZ5++mkAwMcff4z9+/cLGZ2IyKewSHeAbSC9SWe0T692h7Q4DZ6alYarhne9YVx77p2SipevHYqkcJWTkglnU04l1uwrhUQswktXD3b7nvVqpQxv3jQcYhHwTeZJ/OIjsxOIiMg/6JobUHYwAwAQN2wSnludjYdX7cFdy9fYt2kDTjeaC4qIQ3p6Oq677jpYLBY8+eSTQkUnIvI5LNKdxF1bsP2QXYynv9+P7KI6p5yvpE6L5348iL995b6ZAM5mMlvw0hrrNmi3TUjp0p7xrjA+NRz3TkkFADy5ej8qGlrP8w4i8mabN2/GFVdcgbi4OIhEInz//fdCRyLqsZJ9W2ExGRGROhSa2BSowmLsxXh7LGYz8vPzceedd0IsFuOnn37Cjz/+2GbknYiIeoZFugPOXJPuriJ99Z5ifLa9ENvyqpxyvmadESu3ncDqPSdRUqd1yjndrbZFjxCVDMEBMjxwoWu2W+uqh2b0Q1qsBrUtBjz+7T42kiPyYc3NzRg2bBiWL18udBQih5jNJpQf2gUA6Df9L116T3NNGZ5bnY1/76xDcGJ/AMB9i189Z+SdiIi6j1uwOUmjzgit3oQAucSl15k7PgWJoSpcnBbjlPP1jVbjgel9MTolFDEa5fnf4IEighT48u5xOFmrRbBK2G3l5FIxXr8hHde8/SdGpYTBbAEkAjUYJCLXuvTSS3HppZcKHYPIYRVHdkPfXA+pMhBxQyehIierS++zjbanjL8EtQWHUbo/A/2nczs2IiJHsUh3gG2fdIlYBJPZgspGncvXd08bEIVpA6Kces6FF/UDAJjN1j3G3b2e2xEnqpqRFKaCWCxCYphnrK3vH6PGn09ciBCVXOgoRF7JYrGgtVWY5SJKpdLt22oSCS0/4xcAQHTaOEhk3b93qaMSEZI8EHUFh1Gw8zfgnoucHZGIyK+wSHeA7XNcgEyCJp0RlU2tLi3SP99RgKIaLa4aHocBMRqnnvujP/Pxny35WHxFGmYOcs4ovau1Gky4bsU2hKjk+HDuaI9qgGcr0EvqtFh/uNzt3eaJvFlraysmT54syLW3bNmCgIAAQa5NJASTXofi7M0AgNghE3t8noSR01FXcBgnszfBYDA4Kx4RkV/imnQnCJBZp7hXNLh2XfpXu4qwYlMeDhQ3OP3cZQ2tKK7T4se9JU4/t6t8tbsIVU16aPUmxIZ43lT9mmY9Zr6+Gc/8cBDbj1cLHYeIiOgcVXn7YdK3QqEOhTq2V4/PE9EnHUpNGPRN9diwYYMTExIR+R+OpDvANiFyYKwaDwzqi7Q4545un+32Sb2wOacKk/pEOP3cN49JQlqsxmtG0QEgv6oZIhFw75TekEk873lTWKAcV6bH4fMdhXhq9X788uAFkEs9LyeRp1EqldiyZYtg1ybyJ2VHrA3jIlIHt7vUw9bFHQDy8/PRUT9UsUSKXhNm4fDaT/HVV19hwYIFLstMROTrWKQ7QUpEIG4dl+zy68xOj8fsdMf2Ru9IcnggksMDAQD1WgOCA4RtwNYVz14xCLeMTUZCqOdOTX3skgHILKjFbRNSvGqtP5GQRCIRp5wTuYHRaETFUWuTuPDeQ9o9xtrFvRBh8XWoOJYNTcKADs/Xe9IVOLz2U2zduhUnT55EQkKCS3ITEfk6Dus5wo3NhX7ILsab64/haFmjy65xtKwRl7+5BX9ZkeHRW4dZLBYYTWYAQJ+oIChlru2o74jgABl+eXAybhyTxCKdyMc0NTUhOzsb2dnZAKyjjNnZ2SgsLBQ2GFEXZWVlwdDSCHlgMILjOp7qbuvirgrtvHFtUGQCQpP6w2Kx4KuvvnJ2XCIiv8Ei3QnqtQa8tzkPq3a57oPZN5kn8dq6HOw8UeOya8QEK5FT3oTcyiacrPXcPdO3H6/B5H9uwAdb84WO0iW26YMHiuvxacYJYcMQkdPs3r0bw4cPx/DhwwEACxcuxPDhw7F48WKBkxF1zZ9//gkAiB08DiKxcx54xw21Np/773//65TzERH5I053d4BtXLRBa8BLPx/BkPhg3DA6ySXXmjUkFiEqOcb1CnPJ+QHrqO/7c0ZhSHwwwgI9d/uwj7edQGl9K45XNgkdpctyK5pwxVtbIRaJMD41HH2i1EJHIiIHTZ061aNnHRGdj61Ijx44xmnnjEkbiyO/fIzdu3fj2LFj6Nu3r9POTUTkLziS7gS26dYVja7b1/fGMUl486bh6Bvt2uJuSr9IhAXKUdHY6pEfPovrtPjtUBkAYO6EFGHDdEOfqCDMGBgNk9mCF9ccFjoOERH5udraWhw4cAAAED1glNPOqwgKxvjx4wEAq1atctp5iYj8CYt0B9j3SZdbf41VTXqYzc4vbLccq8R/thzHsXLXrUe3sVgsuGPlLox9aT32F9e7/Hrd9cWOApgtwPje4ejn4gcWzvbkZQMhFYuw4WgldnBLNiIiEtCGDRtgsVgQFBkPVWikU889a9YsANYp7zk5OfYvk8nk1OsQEfkqFulOoJBIIBIBJrMFtS16p5//h+wS/GPNYbfsYS4SiRAgl8BiAXadqHX59bpDZzThy51FAIC5E1zfTd/ZekUE4obRiQCAf/121CNnKhARkW8zmUzIycnBN998A6Djru6OmDFjBqRSKQ4dOoT/e3ElHl61B3ctX4O8vDynX4uIyBexSHeA6NSqdJFYhDCVdQ13RaPO6dcZmRyKi9KiMbZXuNPP3Z6HL+qHLY9Nwx2TOu70KoQDxQ1obDUiWqPAjIHRQsfpkb9e2BcKqRi7TtRiZ77rmgASERG1Jy8vD3ctX4Mff9sIANAk9HP6NTQaDaZOnQoAaCwrhDo6CUERcU6/DhGRr2LjOAecuQNbpFqB6mY9Kht1GBjr3OvcNCYJN41xTUO69qRGBgEAmnRG6AwmhAcp3HbtzoxMDsWOJ6fjeFUzpBLvfL4UE6zEoksHIDFMhTEubAJIRETUEVlAEJqrSwEAIYnOL9IBYPbs2fj9999RfmS3S85PROTLvLPS8TAWi7VIB5w/kn6ytgVf7SrCkbIGp573fN7ffBwjXliHdzZ61tS00EA5RiaHCh3DIbdN7IXpA6PtW7MRERG5U11hDgBAFRYNWUCQS65x5ZVXAgBqi3LQ2uhZy+eIiDwdi3QHnFli9Y4IRP9oNeRS5/5K/8ytwmPf7sPf/3fIqec9n4TQAOiNZhx1Q7O6rvh8RwH+8dMh5HnRtmudsVgs2HCkAvO/yILJBc0GiYiIbGzr0HNycpCfn4+awqMAAE1sisuumZSUhLS0NMBiQcm+P112HSIiX8Tp7k5hwfOznd94BQCCA+SYkBrutvXoNlP7R+G3hy9A3yjXPGHvDovFgg+25uN4ZTP6RgfZp+N7sxa9CQ+tyka91oBLBsXgimFcq0dERK5hW4ceFBGHimPZqCk4AgDQxLq298z06dNx6NAhlOzdgsg+Q116LSIiX8KRdAe4Y7byJYNj8MVd4/DgjL6uv9gZAuQS9ItWw2CyoKimxa3XPtueojocr2xGgEyCWUN9o5gNVEhx+0Trh6PlG3LZ6Z2IiFwqKCIO6ugkKNVhaCzNB+DakXTAWqQDQNmhnTAZnL/7DRGRr+JIuhPY6qtWgwl1LQbEBCudcl6T2YK1B8owKE6D5HCV29cwZ+RV4+5PdiMpXIU1D0x267XP1Cs8EC/MHoSGViOCFL7zT/a2CSnIqWjEXZN7c306ERG5RVPlSZhNRiiCQhAQ4tz90c82YMAAKNSh0DXWnhq9H+vS6xER+QqOpDvgzMIqu6gOA55Zi2vf2ea08xdUN2P+F1m45I3NEGLZcr/oIDTrjahs1KGh1eD+AKeEBspx6/gUzJ/WR7AMrhCskmH5zSOQnhgidBQi6oElS5Zg9OjRUKvViIqKwlVXXYWjR48KHYuoUw2lJwAA4b0Hu/wBsUgkQsSpae5Vx/YiPz/fvjbeZDK59NpERN6MRboTtO3u3gqzkyrqFr0JQxOCMTQ+BBKx+0daw4MU+OXBC7B90XRolDK3Xx8ATlQ143Bpg09PB9cbzfhqVxG2H68WOgoRdcOmTZswf/58bN++HevWrYPBYMDFF1+M5uZmoaMRdaixoggAEN4rzS3Xi+wzDABQnpOJ51Zn4+FVe3DX8jXIy/Os3WOIiDyJ78wdFljUqSLdYLKgtkXvlL3FB8cH48cFkxw+jyP6x6hhNltwtKwR/WPUbr/+e1uO44sdhbh/aioeu2SA26/vDss35OKN9ccwMjkU39w7nlPfibzE2rVr2/x55cqViIqKQmZmJi644AKBUhF1rqniJAAgNMk999SI1CGASISW6jJIZAqoo5Pccl0iIm/GkXQnsMACmUSMiCA5AKCsodUp5z1W3oiKxlZBR5HrtQaMXbIel76xGXUt7m36YjSZsfZAGQBgXG/3drd3p5vHJkEuFSOzoBY78muEjkPkMbRabadfRqPRfqzBYOj02NbW0/9dtlgs7R7jqPr6egBAWFiYw+cicgWDthnaukoAQGhyf7dcU65SIyzZ+kCgOv+AW65JROTtOJLuANuAp62GjlIrUdWkR0WDDoOc0IT8oVXZOFjSgP/MGYUZadGOn7AHggNkCFXJoNWbkFPehDG93Pfhc1teNWqa9QgLtG5D56uiNUpcPzIBn+8oxHubj/v0Awmi7pg8ufOGlS+//DJmzJgBAHj77bfx6aefdnhsWloaPvnkEwBAXV0dLrroonOO2b17d4+zms1mPPTQQ5g4cSIGDx7c4/MQuVJtUQ4AQKEJg1Id6rbrxqSNRc2Jw6g5vt9t1yQi8mYcSXeACG2nJUdrrFPcy50wkm6xWGC2AGIR0Efgvco/mDsaWc9c5NYCHQB+2lcCALh0cAykEt/+p3rn5N4QiYA/jlTgWHmj0HGIqJvmz5+PAwcO4MsvvxQ6ClGHagutjQ3V0cluvW7MIGtX95r8gzCb2TCOiOh8OJLuBLbJ6NEa69Zr5Q06h88pEonwy4OT0WowQS5wgZoYpoLFYkFuRSN6RQS5pYmd0WTGb4fKAQCzhsa6/HpC6xURiIvTovHrwXK8v+U4/nndMKEjEQluy5YtnX5fJjvd0PL+++/H3Xff3eGxZ/Z6CAkJOe+5u2PBggX46aefsHnzZiQkJDjtvETOVltwBACgjklx63XDew2CRK6EsbUZtQVHIVcJO/hAROTpWKQ74Oz+XvYivdHxkfSGVgMkIhECPWBfcIvFgsvf3IqDJQ347v4JGJHk+ily1c169ItW43hlE8ak+Mf6znumpCJao8Qdk3oJHYXIIwQEBHT5WJlM1qZo74xIJOrWuTtisVjw17/+FatXr8bGjRvRqxf/v0uezTbd3d1FulgiRUh8KqrzD6LiaCYShk9x6/WJiLyN8BWgD7CtSb9mRDwmpIYjOTzQ4XN+vr0Qr6w9gtsmpOC5Kwc5fD5HiEQipEQE4lhFE/IqmtxSpEdrlPjqnvFoNZh8fqq7zYikULf8bonIOebPn48vvvgCP/zwA9RqNcrKrI0ug4ODnfIQgMiZjLpWNJQVAAA0sSluv35wQp9TRXoWi3QiovNgke6Asyd9J4cHOqVAB4DCmhYAQHig3Cnnc9Qzs9Lw6nVDoZK795+MUiZx6/U8QX2LAV/uKsSt45Pd/vsmoq575513AABTp05t8/pHH32E2267zf2BiDrRWF4AWCyQB2ogDwx22XUsZjPy8/MBAPn5+faBjJCEPgCAqrx9MJuMHb2diIjAIt0pLHD+FmkvXT0Yj83sf86UeqHEBFun8hfXaaFWSqFRdm1aaU8cLWvEgi+ycMWwODwwva/LruOpbv7PdhwsaYBSJsHcCSlCxyGiDgi5PSZRdzWWFwEAAiOcsP1MJ5pryvDc6kKExdeh4lg2NAkDTl03FrKAIBi0TagvPg5gtEtzEBF5M/+YR+wiZxfQWr0Jj369F3M+3AmDyezw+UMD5QhRecZIOgA8+OUeTHz5D6zdX+bS6/x2sAzHKpqwt6jOpdfxVDeOSQIA/GfrcZjMLAKIiMhxjRWnivRw1zdjVYXFQB2dBFVolP01kUiMkCTr3uzV+QddnoGIyJuxSHeGU3WUQirGd3uKsTmnElVNPe/wXq81YODitZj5+mbojJ6zVUmviECIRUBBTbNLr7PusLWr+0UC7Q0vtOtGJKB3ZCBmD4uH3uj4wx4iIqLG8kIAQGB4jGAZQpMGAgCq8w8JloGIyBtwursDzt4nXSwWIUqtQGl9K8obdIgN7lnjoMLqFrQazKhu1kMh9Zw12XPGp2Du+BSEunid/Fs3jcBvh8oww0+L9AC5BOsXTmmzZRQREVFPWSwWNFacBOCekfSOhCRbi/TaoqPQ6/WC5SAi8nQcSXeCMyckR9n3Su/5NmwDY9XY+MhUvDdnpIPJnCssUI7QQDlqm/UOzRQ4n6RwFe6c3BsRQQqXXcPT2Qr08oZWlNU7vqUfEZErLV++HCkpKVAqlRg7dix27tzZ4bEHDx7Etddei5SUFIhEIixbtszhc1LnKisrYWhphEgkRkBY1Pnf4CKBEXFQqENhNuixb98+wXIQEXk6FukOsA10ntk8KEZjLSwrHCjSpRIxUiICPXI7rqW/HcWIf6zDR3/mu+T86w+X43hlExsyAfhgaz4mvvwH3tpwTOgoREQdWrVqFRYuXIhnn30WWVlZGDZsGGbOnImKiop2j29paUHv3r3x8ssvIyam/anX3T0nde7YMet9JCgqARKpcL1uRCIRovqNAABs375dsBxERJ6ORbqTRdtH0ns+0vyPnw7hLysysP7U2mxPkhIRCIsFKKhucfq5DSYzHvwyGxe+tgkHSxqcfn5vkxargdFswbeZxajXGoSOQ0TUrqVLl+Kuu+7CvHnzkJaWhhUrVkClUuHDDz9s9/jRo0fj1VdfxY033giFov0ZU909J3UuJycHABAc31vgJEBUf2uRzpkRREQdY5HuBGeO+dqK9DIHRtL3FNVh54kaaA2e0zTO5uJBMdi+aDreunmE08+dVVCLJp0RYYFypMVqnH5+bzOudxj6R6uhNZjw9e4ioeMQEZ1Dr9cjMzMTM2bMsL8mFosxY8YMZGRkuPWcOp0ODQ0Nbb7Iyl6kx6UKnASI7JsOANi3bx8MBj6AJiJqD4t0B7TX2CtKbR0VcGRN+t9nD8IbN6ZjVHJYj8/hKkEKKWKClWjRGx2a0t+eTTmVAIAL+kZALGbTNJFIZN8n/ZOMAm7HRkQep6qqCiaTCdHRbRt9RkdHo6ysZ9t19vScS5YsQXBwsP0rMTGxR9f3RZ40kq6JSYYsIAharRbZ2dlCxyEi8kgs0p3gzOXT/aLVuHxoLCb3jejx+QbFBWN2ejxigpVOSOd8n24vQPrz6/Dqr0edel5bkT6lf6RTz+vNrhoeh+AAGQprWrDxKNdiEhF1ZNGiRaivr7d/FRVxBhIAmM1m5ObmAgBC4oUfSReJxQg9tV/61q1bBU5DROSZWKQ7oL2x3mGJIXjr5hG4+4Ke3QiPlTfizo9349/rPbdZWHKYCnqTGcernLdfekVjq30d+uS+LNJtVHIpbhidiORwFYwcSSciDxMREQGJRILy8rY9VMrLyztsCueqcyoUCmg0mjZfBBQUFKC1tRViiRSBkfFCxwEAFulEROfBIt0JnFk6HS1vxO+Hy+2jyp5obO8wbHhkKr65d7zTzlnVqEd6YgiGJQT79dZr7XloRl9s+NtUzBzUsw+8ROR6L7/8MkQiER566CGho7iVXC7HyJEjsX79evtrZrMZ69evx/jxPbtHuOKc/uzoUeusN1V4DMRiicBprMKSTxfp3M2FiOhcUqEDeLN2lqQDAA4U16O0vhVjeoUhOEDWrXMOjgvGC7MHIVgl3BYp56OQStArIhB6oxl1LTr73vCOSIvT4Pv5E6E3mp2Q0Leo5Kf/b1qvNXT73xQRudauXbvw7rvvYujQoUJHEcTChQsxd+5cjBo1CmPGjMGyZcvQ3NyMefPmAQDmzJmD+Ph4LFmyBIC1MdyhQ4fs/7u4uBjZ2dkICgpCnz59unRO6jpbkR4YESdwktM0cb0hl8tRUVGB3Nxc9O3bV+hIREQehUW6E5z9FHj+F1koqG7B1/eOx+iU7jV/S4kIREpEoDPjucTaA2X421fZGN0rDCvnjXHaeeVSTu5oT0VjKx76MhtHyhqx7YkLoZR5xmgIkb9ramrCLbfcgvfffx//+Mc/hI4jiBtuuAGVlZVYvHgxysrKkJ6ejrVr19obvxUWFkIsPv3f9pKSEgwfPtz+53/961/417/+hSlTpmDjxo1dOiedn8lkQl5enn0/8qBwzynSJVIZhgwZgszMTGzdupVFOhHRWVgROaCj/uPR6lPbsNV3v/v5B1vz8e/1x5DvxPXerpASoUKz3oRj5U0wO7hW+kBxPWYv/xNv/eG56/CFFh6owImqZtQ067H2QM86JhN5G61WC61Wa38Q2traCq1WC5PJuj2lTqeDVquF0WgEABgMBmi1Wuj1egCA0WiEVqtFa6v1v8Vms9l+zo6u0V3z58/HrFmz2mwX5o8WLFiAgoIC6HQ67NixA2PHjrV/b+PGjVi5cqX9zykpKbBYLOd82Qr0rpyTzi8vLw93LV+DdTv2AwDkwZ7V72XkyJEAuC6diKg9LNKd4OyPdrau7D0p0v+7sxBL1+WguFZ7/oMF1D9ajZ/+OglbHpvm8HZp2/KqsLeoDlmFdc4J54MkYhFuHJMEANiaWyVwGiL3mDx5MiZPnoy6ujoA1mnTkydPxp49ewAAixcvxuTJk/Hdd98BAD788ENMnjwZr7/+OgBrcTh58mQ88MADAID8/HxMnjwZV1xxRYfX6I4vv/wSWVlZ9mncRJ4mKCIOLbXWBnyqMM/qa8IinYioY5zu7gD7PulnVemxp4r0kvruF9rXj0xAXmUTekd69pR3kUiEwfHBMJstqGhsRZS65+vSt+VVAwAmpIY7K55PumlMEiakhmNkcqjQUYj8XlFRER588EGsW7cOSqVnbpdJZGhtgbbO+mBXFe45RbrFbEZYmHU5YE5ODkpLSxEbGytwKiIiz8Ei3QEdNY6LdWAk/Z4pwu9h2lW7TtTgnk8zERusxJoHJvf4PE9cOgCT+kRg+kCuNexMpFqBSDU735P/2LJlCwDYi+BPPvkEFosFcrm1sebf//53PPfcc5DJrM0Ub7/9dsyZMwcSibVnw9SpU7Flyxb7A9VevXrZz9nRNboqMzMTFRUVGDFihP01k8mEzZs346233oJOp7PnIBJKc3UpAECmUkOm9JyH/801ZXjtdz2CohLRVFGE7777DvPnzxc6FhGRx2CR7gSWs4bSY4IDAACl3SzSS+q0WH+4HKlRQZiQGuG0fK6SHKZCTbMeeqMZLXpjmy7k3TEgRoMBMdzPtiuMJjN+3FuC1XuK8e6tI3v8OyfyBgEBAW3+fHYhrVC0fWglk8nsBTsASKVSSKWn/z8iFovPOefZf+6q6dOnY//+/W1emzdvHgYMGIDHH3+cBTp5hOYqa5GuCvGs9eiAdfp99IBRaKooQmZmptBxiIg8Cj/hO6Cjldi2kfTSbk5331tUh2d+OIgRSSH47n7PL9KjNEr8uGAiBsZqIJP0rL3BoZIGqJVSJIapnJzON4lFIiz7/RgKa1rw095S/GV0otCRiPySWq3G4MGD27wWGBiI8PDwc14nEkpzVTEAICA0SuAk7YtIHYK8zauRnZ0tdBQiIo/CxnFOcHZTYFuR3thqhKkbnc+DVTLMGBiNcb29Z2320IQQSMUi1LXoe/T+f6w5hMn/3ICvdhU5OZlvEotFuHmstYHc5zsLBU5DRESerMk2ku6hRXp4b+sDrQMHDuDAgQPIycmx795AROTPOJLuiA4WpUcEKZD1zEUIVclON5frggmpEV4xzf1MB4rrcc+nmVDIxPjjb1O79d5Wgwm7C2oBACOSQ5wfzkddNzIBr/12FHuL6nCguB6D44OFjkREwDlbiBEJrbmqBIDnjqQHRcZDqgyEobUZ97z5A6RKFd6fPwv9+vUTOhoRkaA4ku4EZ4+ki8UihAXKu1WgA9ZGbHsKa9GsMzoxnWslhqlQWq9FUU0Lapq7N5q+p7AOeqMZkWoFUiODXJTQ90QEKXDJYGsX3C84mk5ERO0wm832xnGqUM9bkw5Yd4rRxCQDALT1VQiKiBM4ERGRZ2CR7gDHdgc/1zPfH8DVb2/DzhM1Tj6z6wQHyPDVPeOx99mLERYo79Z7M/Ks28JMSA3v9gMNf3fTGOta9P9ll6DVwKmBRETUVkVFBcxGA0RiCRTqMKHjdEh9qkivPn5Q4CRERJ6D092d4Ozu7gDw2m9H8fXuk7j7gt64fVKvLp0nNliJeq0BiaE96zYslFEp1pt/s86IQEXX/0lxf/SeG9crHA/N6ItLB8dCKWMXaSIiaquw0DrTShUWDbEH7zZgG0mvzmeRTkRkwyLdAbbB37OnuwOAzmhGWUMriuu63uH9o3ljnJTMvfIqm3DPp5nQ6k3Y+vi0Lo2Km80WtBqtI8De1CjPU4jFIjw0g2v2iIiofbYiPSgyXuAknVNHJwIQobmqBLqmeqHjEBF5BE53d4CokwnvMRprh/eyLu6V3qI3orC6xSunLscFB6Cguhkl9douP5QQi0X46a+TsXfxxUji9ms9Vtusx0d/5qOgulnoKERE5EGKiqy7pgRFJQicpHNSRQACI6x9VupO5gqchojIM3Ak3Qna22TNtg1bSRf3St+ZX4PbPtqFgbEa/PLgZCemc70AuQSf3D4WA2LUCO3muvRglcxFqfzDo9/sw++Hy1HRqMPjlwwQOg4REXkIbxlJBwBNXCqaq0pQd/KY0FGIiDwCR9Id0Nms7tgQ67ryro6kN7YaoZSJEaNROCOa241PDUdooBw6Y9dmAryy9giWrsvp1nIAOtd1I60fvr7JPAmjySxwGiIi8hReVaTHpwIA6opYpBMRARxJd4r21qTbRtIrGnUwmsyQSjp/HnLFsDhcPjQWOqN3FloldVrc91kmiutasfPJ6RCLO36CYTJb8GlGAZp0RswcFI34EO9qlOdJLhwQjQExakzpH4lWoxlB5/l3RkRE/sE+3T0yAdq6SoHTdC447lSRXpwHk8n7lv0RETkbP9E7oLP2aBFBCkjEIpjMFlQ26c57LoPJDJFI5LWduiPVChyraEJVkw65lU2dHnu4tAFNOiPUCikGxGjclNA3yaVi/PLgZCy6dCCCutFZn4iIfFdtbS3q661N2Lxh7/HAiHhIFSqY9K3IzeW6dCIiFulOce5QukQsQrTaOnW9tAtT3u/6ZDcGP/srft5f6vR07iCTiPHeraOQsehC9ItWd3pseJAcj87sj3kTUyDpZMSdusbWTb+6SYd6rUHgNEREJLS8vDwAgCIoBFKF589WE4nFCEsZCADYu3evwGmIiITHIt0B59tp7MEZffHPa4cioQv7npfVt6JJZ4RK7p0j6QAwqW8EYoMDzrs2OjY4APOn9cHCi/u7KZnvW7ouB+OWrMcXOwqFjkLkN0wmE5555hn06tULAQEBSE1NxQsvvABLe2ugiNzIVqSrwqIFTtJ14b0HAQCys7OFDUJE5AE4P9YJOvo8dsPopC6f49v7JqCsoRXRp7Zu80bVTTrM/yILOeVN2PHkdMjaWR9tsVhQ1aRHpNo7G+R5qrhgJQwmC77eXYR7p/Tu0l71ROSYV155Be+88w4+/vhjDBo0CLt378a8efMQHByMBx54QOh45Me8skjvNRgAR9KJiACOpDuks33SuytQIUVqZJBXrysOVclxpKwRNc167C+ub/eYguoWjH7xd8x8fTPMZo42Ocvlw+KgkktwvKoZu07UCh2HyC9s27YNs2fPxqxZs5CSkoLrrrsOF198MXbu3Cl0NPJz9iI91JuK9DQAQG5urn09PRGRv2KR7gQdlZq5FY1YviEXq3Z1PgW5sLoFU17dgNs+8u4PdmKxCG/cOBx//G0KhieGtHvMrhM1AAC1UtppB3jqniCFFLOGxAIAVu0qEjgNkXNotdp2v2zdn81mc5vXbYxGY7vva2093R9Er9fbX9fr9T3KN2HCBKxfvx45OTkArCOAW7duxaWXXurAT03kOG8cSVdqwqAMjgAAZGVlCZyGiEhYghfpy5cvR0pKCpRKJcaOHXveEYhly5ahf//+CAgIQGJiIh5++OE2H7zc6lSN2dH6w5zyJrz661F8tftkp6cpqdeioLoFBdUtzk7odlP6RaJ3ZFCH37cV6aNSwtwVyW/cOCYRAPDz/lI06YwCpyFy3OTJk9v92rNnDwDg5MmT9temTp1qf993333X7vvmzJljP+bNN9+0v/7mm2/2KN8TTzyBG2+8EQMGDIBMJsPw4cPx0EMP4ZZbbnHo5yZylDcW6QAQEt8bALBr1y6BkxARCUvQudWrVq3CwoULsWLFCowdOxbLli3DzJkzcfToUURFRZ1z/BdffIEnnngCH374ISZMmICcnBzcdtttEIlEWLp0qdvzn28cOObUXull5+nuPihOg6/uGX/ehmveoF5rwMJV2dhfXI+tj18IubTtc6DMAutU7FHJoULE82kjkkLROyIQBrMZBdXNGBQXLHQkIp/21Vdf4fPPP8cXX3yBQYMGITs7Gw899BDi4uIwd+5coeORn2ptbUVxcTEA7yvSg+NTUXZoJ4t0IvJ7ghbpS5cuxV133YV58+YBAFasWIE1a9bgww8/xBNPPHHO8du2bcPEiRNx8803AwBSUlJw0003YceOHW7NfbaOprvHBVu7upc1tMJktnS43ZhaKcOYXr4xsqxRSpFdVIfqZj32nqzD6DNGzOtbDMirbAYAjGCR7nQikQhf3DUOUWoFlxKQT9iyZUu7r8vlcgBAQkJCu8dcc801uOKKK855/cyGin/9619x//33AwAkkp7tqvHoo4/aR9MBYMiQISgoKMCSJUtYpJNgTpw4AYvFgsDAQMhVnW+J6mmC41MBcCSdiEiwIl2v1yMzMxOLFi2yvyYWizFjxgxkZGS0+54JEybgs88+w86dOzFmzBgcP34cP//8M2699dYOr6PT6aDT6ex/bmhocNrPcL4O2pFqBSRiEUxmC6qadB12bv9gaz4yC2pw7YgETB/oXU+9zyYSifDytUMRo1EiLU7T5nsHSqyNYFLCVQgLlAsRz+fZZm8A1mUY7PJO3iwgoPPtK8VicbvHSKVSSKWd395shb4jWlpaIBa3nS0kkUhgNnv/rCjyXidOnAAAxMfHe909IDjOOt29oKAAlZWViIyMFDgREZEwBCvSq6qqYDKZEB3dtiiNjo7GkSNH2n3PzTffjKqqKkyaNAkWiwVGoxH33nsvnnzyyQ6vs2TJEjz//PNOzX62jrZgk4hFiFYrUFLfiuI6bYdF+q78Gqw9WIaxvcJdmNJ9Lkpr/0HDxD4R2L5oOsobBOoh4Ce25VXhnY15GJ0Shgem9xU6DpHPuuKKK/Diiy8iKSkJgwYNwp49e7B06VLcfvvtQkcjP1ZQUADAWqR7G5lShV69eiE/Px+7d+9mE0Yi8luCN47rjo0bN+Kll17C22+/jaysLHz33XdYs2YNXnjhhQ7fs2jRItTX19u/ioqc1/m6K8+n40KsozwlddoOj5k7IQXPXZGGcb19o0hv0hmx4IssTP7nH9AZTW2+FxOsxLAOOr+Tc1Q06LDlWBW+ziziNndELvTmm2/iuuuuw/3334+BAwfikUcewT333NPpPYnI1c4cSfdGQ4YMAcAp70Tk3wQbSY+IiIBEIkF5eXmb18vLyxETE9Pue5555hnceuutuPPOOwFY/0Pe3NyMu+++G0899dQ50w4BQKFQQKFQOP8HOENnZVBcSABQUNtpkT4+NRzjU32jQAeAQLkE249Xo6pJj71F9RjTKwxmswUf/pmPYYkhGJEU2uH6fHLczEExCFJIUVSjRVZhLTvpE7mIWq3GsmXLsGzZMqGjENnZRtLj4uJQI3CWnhgyZAh+/PFHFulE5NcEG0mXy+UYOXIk1q9fb3/NbDZj/fr1GD9+fLvv6Wj9H9DxNmiu1JWlXv1j1Bgcr4FaKWv3+xaLBc/+cABvrj8Grd7U7jHeRiQS4e+zB2PV3eMwLNHaYfx4VTP+seYwbv1gB8wC/F35kwC5BM9dOQhf3TMeI9mgj4jIb5hMJvuSQalU2uFyPE925ki6EJ/tiIg8gaDd3RcuXIi5c+di1KhRGDNmDJYtW4bm5mZ7t/c5c+YgPj4eS5YsAWBd/7d06VIMHz4cY8eORW5uLp555hlcccUVPe7O6wyd3UTmT+uD+dP6dPj9uhYDPs6wPvW+e0pvp2cTymVDYtv8eU+hdeu1ofEhkEm8apWFV7puZILQEYiIyM3y8vJwMMe6R/rqPcWITe8ncKLuGzBggH2m5cmTJ5GYmCh0JCIitxO0SL/hhhtQWVmJxYsXo6ysDOnp6Vi7dq29mVxhYWGbkfOnn34aIpEITz/9NIqLixEZGWlv3CMEZzRNFYtE+OuFfdCgNUAhFe5Bg7O16I14/sdD2FNUix8XTIImQIZxvcN8pjmeN9DqTfj1YBki1QpM7BMhdBwiInIxvV4PfUsjACA43jsf/AcEBGDw4MHYu3cvdu3axSKdiPySoEU6ACxYsAALFixo93sbN25s82epVIpnn30Wzz77rBuSOU+TzojSOi36Rp+7X2mwSoa/XdxfgFSuFSCTYP2RClQ16bC3qA4zB8Vg5qD2ew2Qa/xny3G8ti4HE/uEs0gnIvIDpaWlgMUCiUwBWUCQ0HF6bPTo0di7dy92796Na665Rug4RERux3nHDhCd6u/e2ZKpJp0Rg5/9FRe9vhnNOuM53z9S1oD/7ixEZkGtq2IKQiQS4alZA/DRbaMxOD5Y6Dh+6arh1s6+2/KqUdxJ40IiIvINJSUlAABVeIzX7ZF+ptGjRwNgh3ci8l8s0h3QlftfkEIKjdI6YaG9Du9bcqqw6Lv9+CTjhJPTCe/q4QmYNiAKB0saMOvfW7B0XY7QkfxKYpgK43qHwWIBVmedFDoOUaf8oUGUP/yMJKzi4mIAQGCYd89csxXpu3fv5v9viMgvsUh3Akunm7AB8aEqAMDJdor0uJAATB8QhWEJIa6IJqhWgwnP/XgQD/w3CwdLGpBX0SR0JL9z7QhrA7lvs4r5QYc8kkxm3fmipaVF4CSuZ/sZbT8zkbPZi/SI2PMc6dkGDx4MpVKJuro65ObmCh2HiMjtBF+T7g/iQ5Q4XNqA4tpzi/RZQ2Mxa6h330w7opCKsWZ/KSobdQCA4UkhwgbyQ5cOicXiHw4iv6oZWYW1GJnMPdPJs0gkEoSEhKCiogIAoFKpvHqabnssFgtaWlpQUVGBkJAQQXcjId9mn+7u5SPpMpkM6enp2L59O3bt2oW+ffsKHYmIyK1YpDvB+QYo40MCALQ/3T2zoBYSsQh9ooIQpPCtvw6RSIRHLuqHF38+jIZWI9ITQ4SO5HeCFFLcNCYJZosFEUEKoeMQtSsmxlpQ2Ap1XxUSEmL/WYlcwT6SHu79/85Gjx5tL9JvvvlmoeMQEbmVb1WFbtbV0Z64U0V6e827nlq9H0fKGvHpHWMwuW+kU/N5gin9o/D4d/shEYswKI4N5ISw+Io0oSMQdUokEiE2NhZRUVEwGAxCx3EJmUzGEXRyOdtIemB4LAytzQKnccyoUaMAWNelExH5GxbpTnDekfTQjkfSozRKNGgNiFIrXRFNcJmFNQAAuVTslH3lqefqtQbUteiRHB4odBSidkkkEhayRD1kNBpRVlYGwDrdvb4kT+BEjrE1j8vKyoLRaIRUyo+sROQ/2DjOAV2tOe0j6e2sSf/k9jHYtmg6+secu4e6LxiZFAq1Ugqt3oQ9hXVCx/FbP+0rwegXf8dzPx4UOgoREblAcXExTCYTRBIJAoLDhY7jsP79+0OtVqOlpQWHDx8WOg4RkVvxsaQTnK+7+4AYNb69bwISTo2o2+iMJlQ16RERJIdC6pujRzHBAXjskgFQSMXoFx0kdBy/lRargd5oxuZjVahs1CFSzfXpRES+pKCgAAAQEBwBkdj7x2AsFgsGDhyInTt3Ys2aNUhLS+NMGyLyG97/X3EBdXX6tkouxcjkUERr2k5pzylrwsSX/8AF/9zggnTCs1gsOFrWiJtGJ+IvoxIRzsZlgukdGYRhiSHQKKXI5VZ4REQ+58wi3Rfk5eWh2GAd3Hjzv2uQl+fd0/eJiLqDI+lO0NPtp+u1BsglYp8d1TxZq8XMZZuhUUpx1+Te2F1Qi3dvHQmljE/ChbD85uGIUishl/LZHBGRryksLAQAKEO8t0i3mM3Iz88HAOTn5yOi9xAU79mEltpygZMREbkXi3QHiE6tSu9Kjb5iUx42HKnAnZN746K0aADApL4ROPqPS9CiN7kwpXD2F9cDAJLDVfhsRwHKG3TIKqzFhFTv/QDhzRJCVUJHICIiFzl58iQAIEDjvevRm2vK8NzqQoTF16HiWDaU4XEAgIayAphMvvlZiYioPSzSHdCdbuW5FU3YkV+DC/pF2ot0s9kCsViEQB/bH92mpE4LiViEIQkh6BMZBLEISI3kunQhZRfV4T9bjqNftBoPTO8rdBwiInKSoqIiAIAyOEzgJI5RhcVAHZ2EpqoSSFQhkCpUMOpacPz4cQwcOFDoeEREbuGb1aG7dWEovb290p//30Gs3lOMB6b3xZ2Te7sqnWDunNwb/zcuGc06I9eje4iTtS34aV8p4kPqsGBaH4jF3BePiMgX2EbSlV48kn42kUiM0MS+qMzdi4MHD2LWrFlCRyIicgsuTnVAd8qbhHa2Yatq1qOh1QixD28grpRJEB6kgNFkxkd/5uO+zzKh9dHp/d5gxsBoqBVSFNdpsfNEjdBxiIjISexFug9sv3am0OQBAICDB7mFKBH5DxbpTnC+LdiA0yPpJWeMpL901RD8vvACXJke57JsQimu0+LlX45g3SFrsxeJWIR3Nx3HLwfKkFVYK3A6/6WUSXDZkFgAwOqsYoHTEBGRM7S0tKC6uhoAEKDx7unuZwtN6geARToR+RcW6Q7ozgB4fOjp6e6WU+3gg1Uy9IlSI8IHp4JnFtRixaY8LN+QCwAQiUS4fVIKHr9kAJLD2cBMSFePiAcA/Ly/FK0GzmogIvJ2xcXWh64qlQpSZaDAaZwrNMk6kn748GE2jyMiv8Ei3Qm6sgVbbLB1j/QWvQl1LQYAwF9WZOAv72bgZG2LK+MJYl9RHQBgaEKw/bW7L0jFfVNT2WVcYGNSwhAfEoBGnREbjlQIHYeIiBxkaxoXHR0NkY8toVPHJEEiU6ClpQU5OTlCxyEicgsW6Q7p+o1QKZPY90Mvqm2B2WxBZmEtdubXQCbxvb+Gfae2XxsSf7pIN5ktWLWrEAtXZaNFbxQqmt8Ti0V4atZAfHrHGFw8KEboOERE5CDbevTY2FiBkzifWCyBJiYZAJCVlSVwGiIi92B3dyfoyj7pAHDT6EQYzRaEquSwAPj09jGoatYjLFDuynhuZzJbcPBUkT40IcT+ulgELPv9GErrW3HNiARM6sv90oViW5dORETez1akx8TEoFXgLK6gieuN2qIcZGZm4pZbbhE6DhGRy7FId0B3Z5QtvLh/mz9P6OObRWp+VTOa9SYEyCToE3V6X3SRSIRbxiZBZzTb1+iTcHRGE/44XAGlTIJpA6KEjkNERD105nT3AoGzuEJwXC8AQGZmpsBJiIjcg0W6E1i6sij9LIdLG7B8Qy76R6vx1+l9XZBKSBZcOSwOIpG1q/uZFlzoaz+r9/rvjkI8979DGJYQzCKdiMiLnTnd3TeL9N4AgD179sBsNkMs9r1lgkREZ+J/5RxgKz+7WqJXN+mwZl8p1uwrxYmqZvy0rxQbjvpe464+UWr8+6bheOPG4ed8z2y24H97S/DU6v1cly6wWUPjIBGLsPdkPfIqm4SOQ0REPXTmdHdfFBgRB6VSicbGRuTm5godh4jI5VikO6C7HVSPljVi/hdZeG3dUQyI1eDpWQPxf+OSXZTOM4lEwMu/HMHnOwqRWcD90oUUqVZg5qBoXJUeJ3QUIiJywJnT3X2RWCLBgAHWrdg45Z2I/AGnuztBV2e727YeO1mrRXKYCndO7u3CVMKwWCy47N9bERusxMvXDEGURtnm+yKRCNePSkCD1oiYs75H7rf85hE+t10PEZE/0Wq1qK6uBnCqu/ve4wInco1BgwYhOzsbmZmZuOmmm4SOQ0TkUizSHdDd0iY2RAmxCNAbzfg6swhVTXpM6hOBYYkhrogniPIGHQ6XNiCnvBGaAFm7xzw0o5+bU1FHbAW6zmhCs87kczsNEBH5OttUd5VKBY1GI3Aa10lLSwPAbdiIyD9wursTdHVNukwiRmywtav5j3tL8OqvR7HrRI3rggngYIl167XUyEAoZZJ2j7FYLFh/uBwvrjmEZh3XpQvtu6yTGPPierz66xGhoxARUTfZivSEhASfnhk1ePBgANYivScNe4mIvAmLdAf05F6YGGYt0hNCVLhuZALS4nzrqfeo5DB8dNtoPHLWdnNnEolEePbHg3h/Sz52c1264GKClajXGvDTvlK0GkxCxyEiom6wFemJiYkCJ3Edi9kMiUQCuVyO+vp65OTkCB2JiMilON3dGbrxRDcxVIXtqEFCaIAPbr0GBKtkXdrO66r0eFQ16RDO6dWCG9crHLHBSpTWt+KPIxW4bEis0JGIiKiLbE3jEhISBE7iOs01ZfjH/woREJkIfXEefvnlF/Tv3/FgABGRt+NIugN6MpJuax73Z14V/jhS7nPbkGUW1KBeazjvcY/M7I+Xrx2KwfHBbkhFnRGLRZidHg8A+C6rWOA0RETUHbYiPSAgAPn5+d0ZN/AqqrAYRKQOBQAcPHhQ4DRERK7FIt0JunM/TAwLQKBcgh35Nbh95e4uFbTeol5rwLXvZGDY87+d9+eyWCzIyKvG6+ty0MR16YK7ZoS1SN94tAI1zXqB0xARUVcdPXoUALC12IinP98IXWurwIlcJzTZOnrOIp2IfB2LdAeITvV3785T69np8dj99AxM7huJwfEahKp8Z7r34dIGAEB8SACCO+jsbiMSifDYt3vxxvpj2O1jzfO8Ub9oNQbFaRAgk+BIWYPQcYiIqIvKysoAWAtYVej5l5t5s7Aka5F+6NAhNo8jIp/GNemO6MF0d4lYhAC5FJ/cPsb5eQR2sMRa3HW1Gd5lQ2JRWtd63oKe3GP5zSMQE6zssCs/ERF5HluRHhAShdaGaoHTuJYmrjfEEinq6+uRn5+P3r17Cx2JiMglWKQ7gaVbE96B+hYDjlU0IiZYaV+j7gsOnSrSB3WxSF906UBXxqFuSokIFDoCERF1g16vR22tdZcUVWikzxfpEqkMQdFJaCg5jqysLBbpROSzON3dAT3djfSad/7EdSsycNtHO52aR2i2PdLTYrtWpFssFuwtqsO7m/LQ2Oo7a/O92YHievztq71YsSlP6ChERHQetlF0kUQCeaB/NGINjusFAMjMzBQ4CRGR67BId4LuLouSS63TiZVS35lWbDJbUH2q4digLnZsF4lEeODLPVjyyxHsPsH90j1BXmUTvs06iS92FHK9HxF12fLly5GSkgKlUomxY8di587OH0J//fXXGDBgAJRKJYYMGYKff/65zfebmpqwYMECJCQkICAgAGlpaVixYoUrfwSvVFJSAgBQqkMh6smWM16IRToR+QMW6Q7o6Q1xeFIIAHRpP3FvIRGLsPPJ6dj2xIWIC1Z2+X0XDYzGjIHRCFRw5YUnuDgtBoFyCQprWpBZwAcnRHR+q1atwsKFC/Hss88iKysLw4YNw8yZM1FRUdHu8du2bcNNN92EO+64A3v27MFVV12Fq666CgcOHLAfs3DhQqxduxafffYZDh8+jIceeggLFizAjz/+6K4fyyvYinRFUKjASdxHE2st0rOysvgwmYh8Fot0J+juPSJabS1iT9ZqXZBGOCKRCHEhAd16ePH05Wn4z9xRGNMrzIXJqKsC5BL87eL+ePOm4dzDnoi6ZOnSpbjrrrswb948+4i3SqXChx9+2O7xb7zxBi655BI8+uijGDhwIF544QWMGDECb731lv2Ybdu2Ye7cuZg6dSpSUlJw9913Y9iwYecdofc39iJd4z9Fujo6CTKZDNXV1SgsLBQ6DhGRS7BId0BPJ5Zty6sCAOzyoa3Hvt9TjI/+zEdBdXO335tb0YhPtxdwXbqHuH1SL1wxLI5d3onovPR6PTIzMzFjxgz7a2KxGDNmzEBGRka778nIyGhzPADMnDmzzfETJkzAjz/+iOLiYlgsFmzYsAE5OTm4+OKLO8yi0+nQ0NDQ5svXnTnd3V9IpDL07dsXAKe8E5HvYpHuBN2dbGU+NfRer/WdovSz7QV4/n+HsKewrtvvvfPj3Xjm+wPYme87Dy28ndlswba8Kuw7WSd0FCLyYFVVVTCZTIiOjm7zenR0tL2p2dnKysrOe/ybb76JtLQ0JCQkQC6X45JLLsHy5ctxwQUXdJhlyZIlCA4Otn8lJiY68JN5B/tIuh8V6QCQlpYGgEU6EfkuFukO6GmPlnduGQkAaGw1otVgcmIiYVgsFhwpawQADOxiZ/czTe0fhQmp4ZBL+c/RU/z7j2O4+f0deOuPXKGjEJEfevPNN7F9+3b8+OOPyMzMxGuvvYb58+fj999/7/A9ixYtQn19vf2rqKjIjYmF4Y8j6QAwaNAgANZ16UREvojdupygu41LwoPkUCulaGw1orCmBf2i1S5K5h6tBjOuG5mAYxWN6B3Z/b22n7tykAtSkSMuGRyDZb8fw4ajFaht1iM0UC50JCLyQBEREZBIJCgvL2/zenl5OWJiYtp9T0xMTKfHa7VaPPnkk1i9ejVmzZoFABg6dCiys7Pxr3/965yp8jYKhQIKhcLRH8mr+OtI+uDBgwFYR9ItFovfdLYnIv/BoUsHiHq4Kv3i1zcjSCHFmzcNR2Koysmp3C9ALsFzVw7C53eOg0zSs39SxXVafJt5Eg1cl+4RBsRoMDBWA4PJgp/2lwodh4g8lFwux8iRI7F+/Xr7a2azGevXr8f48ePbfc/48ePbHA8A69atsx9vMBhgMBggFre9n0gkEpjNZif/BN7NPpLuR43jAKBfv36QSCSorKxEcXGx0HGIiJyORboDevLg1my2IK+yCaX1rRjTKwwBcjbnAoD/+88O/O3rvdh5nOvSPcU1w+MBAKuzTgqchIg82cKFC/H+++/j448/xuHDh3HfffehubkZ8+bNAwDMmTMHixYtsh//4IMPYu3atXjttddw5MgRPPfcc9i9ezcWLFgAANBoNJgyZQoeffRRbNy4Efn5+Vi5ciU++eQTXH311YL8jJ7GZDJh3759qK21bpXpT1uwAYBSqbRPeee6dCLyRSzSnaC7W7D99NfJ+OLOsQj3kSnEj369F7Pf2oqNR9vfE7crJvWJwPCkEIj5L9JjzE6Pg1gEZBXW4URV97v2E5F/uOGGG/Cvf/0LixcvRnp6OrKzs7F27Vp7c7jCwkKUlp6ekTNhwgR88cUXeO+99zBs2DB88803+P777+1TmAHgyy+/xOjRo3HLLbcgLS0NL7/8Ml588UXce++9bv/5PFFeXh7uXPoVAEAkkcIE/3vgP2LECAAs0onIN3FNugN6MtldLBYhLU6Dw6UNeGr1AYQEyrDo0oFOz+ZOe4rqkFvR5NA5/j57ENeUeZgojRIXDoiGTCKCkVNMiagTCxYssI+En23jxo3nvHb99dfj+uuv7/B8MTEx+Oijj5wVzydJpNYH/YrAYL+6f1rMZuTn59u797NIJyJfxCLdCSzd2IQtp7wRf//fIQQqJPj1YDmSw1VeXaS3GkzIPzXK2pPO7jYikQg1zXrszK/GhD4R0ChlzopIDnh/zki/+vBHROQtdI3Wqe7yoJ7fe71Rc00ZnltdCJHJ+jlh165dAiciInI+Ti52RA9ql5I6LbbmVuF4pbWwLa7VwmDy3lHK3IommMwWhKhkiFI71lX3L+9m4N7PsrA9r9pJ6chRtgLdaDKjvoVN/YiIPEVro7WHi1zlX0U6AKjCYhA3bBIgEqGystLeQI+IyFewSHeC7qxJHxCjwdK/DMNDM/pCIRXDaLagpE7runAuZtsffUCM2uER13G9w9AvOggmczcX+ZNL/ZBdjHFL1uOfvx4ROgoREZ1iG0lX+NlIuo1UrkRQpLXBKfdLJyJfwyLdAT3Zgi0mWIlrRiRg1tA4JIVZt18rqG5xdjS3OVLaAMD68MFRz185GL89PAWXDol1+FzkPGGBclQ16fHTvlLojCah4xAREYBW23T3wGCBkwgnOK43AK5LJyLfwyLdCboz7vvrwTK88NMhbDhageTwQABAQbX3ds6+cUwS/nntUFwxLM7hc0nEIjTrjNiUU8n90j3IhNQIRGsU0OpNOFjSIHQcIiICoGuwFen+OZIOAJrYFAAcSSci38PGcQ7oyezujLxqrNx2AkqZGMnh3j+S3icqCH2igpx2vmvf2YYjZY1499aRmDkoxmnnpZ6TiEV45/9GIjUiCMEqNvQjIvIEHEnnSDoR+S4W6U5g6cai9El9IqCQiTG2VzhOnBpBP+GlRbpWb0JpvRbJ4YGQiJ3TAXxUSiiadEa0Gjit2pOMSAoVOgIREZ3Bvibdn0fSY1IgEolQXFyM8vJyREdHCx2JiMgpWKQ7wFaWdme6+4y0aMxIs95EAgukuGxIDEYlhzk9mztkFdbilv/sQP9oNX59+AKnnPOZy9Pwj6skTjkXOVdOeSNW7SrC0IRgzE6PFzoOEZHfamlpgVFnbTrrzyPpUoUSvXr1wvHjx5GVlYVLL71U6EhERE7BNekO6Ek38+/3FOPr3UWoaGzFyORQvH3LSNw+qZcL0rne4VNN43pFBDrtnAqpBHqjGbtO1KCR69I9ysajFfhgaz4+zSgQOgoRkV+rrKwEAEgVAZDIHdv+1NsNGjQIAKe8E5FvYZHuDN0YSn/99xw8+s0+FHrpFPczVTXpIRIB/WPUTj3vte9sw/UrMvBnLvdL9ySz0+MhFgG7C2q9utkhEZG3q6ioAAAogyMc3v7U29mK9N27dyMnJ8f+ZTJx2RwReS9Od3dAT+6LE/tEICVci2iNEgCQV9mEY+VNGJIQjPiQACcndK0nLh2AB6f3hd5kdup5hyeFoKROiwYtR9I9SbRGiYl9IrDlWBVW7ynGQzP6CR2JiMgv2Yr0gJAIgZMIz1ak79q1C3ctX4OgiDg0VZXg/fmz0K8f71NE5J04ku4E3VmT/tLVQ/Dx7WOQeGqP9Od+PIh7P8vEn7lVrgnnYgFyCYIDnNvx+4lLB2D30zPwl9GJTj0vOe7q4da16Kv3FHerYSIRETmPvUgPZpGelpYGACgpKYE8IAjq6CQERTi+LSwRkZBYpDuguwPprQYTthyrxIHievtrp7dh867pwyV1Wiz97SjWHSp3+rlVciksFuBgST3XpXuYmYNiECCToKC6BVmFdULHISLyS6enu4cLnER4QUFB6Nu3LwCgvjRf4DRERM7BIt0JujqiWFynxa0f7MRN72+3v5YSbm265m3bsO0prMO//8jFWxtyXXL+v7ybgVn/3oqtx7xzhoGvClRI8dCMvvjX9cMwwMm9CIiIqGs43d3KYjYjPz/fPq29vphFOhH5Bq5Jd0B316SbzBYMiFFDJT+9xVhSmHeOpB8ps3Z2HxDtmkJtUJwGR8oaUdWkc8n5qefumZIqdAQiIr9jMpmQl5cHACgsLATA6e7NNWV4bnUh6gwhAIDak64ZOCAicjcW6U7Q1ZW5/aLVWPtQ2/3EbduXFVS1wGKxeE2X1iNljQCAAbGuKdIXXtwfz1yeBqmEkz08kcViQVZhLRRSCQbH++8evURE7pKXl2dvjJZzohiAdbq72ejfy8JUYTFQqlQ48tvnaCznFqFE5BtYATmkewV1Q6sBFY2t0BtPd0NPCldBJAIadUZUNemdHdBlbCPpzt5+zSY4QAaJWITjlU1o4Lp0j/PWH7m49p0MLHfRcgciIjpXUEQc1NFJMOqsS+QCNFyTDgChSf0BAK11ldA1NwichojIcSzSnaCrTa6/2lWEMS+ux9++3mt/TSGVICHUuvVafpV3THlv0RtRVKMFAPR30XR3ALjj49248LVNWH/Y+c3pyDHTB0YDANYfrkB9Cx+iEBG5i8mgg1FnvQcrNWECp/EMcpUaylMPLGoLjwqchojIcSzSHWCbmW7p4oT3VoMJIhEQHNB2lUHviCCo5BLUNHvH+usmnRGzhsRiVHIowoMULrtO3+ggyCVilNa3uuwa1DNpcRoMjNVgVEooqr3k3y0RkS9obagBAIgkUshUbOBpExSVAIBFOhH5Bq5Jd0B3V48vuLAv7p/aBwazuc3ry28ZgUC5xGvWo0eplVh+ywiXX+e+Kal4aHo/BJzRaI88x+r7J0Ap498NEZE7tTbUAgDkgcFe87nBHYKiElCVuxe1BUeRkH7B+d9AROTBOJLuBF2d7g4AYrEICmnbwiZIIeWNth0hKjkC5BKUN7SiXssp1Z7GVqBbLBbojCaB0xAR+YfWhmoAgDxQI3ASz6K2jaQXcSSdiLwfi3QHdLewvufT3Rjxwjr8b29Ju99vNXhHobPou/248+Nd2FNY6/JrLfwqG2NfWt/h74yE9UN2MS58bRPe3XRc6ChERH6htd5apCsCubPGmYIirUV6U8VJGFpbBE5DROQYFulO0NWR9JpmPWqa9ZCI2xb3VU06jF+yHkOf/w0mczeG5QWyOacSvx+uaNOl3lVSwgMhEgFFtbzheiKjyYL8qmas3lMMS3emlBARUY/Y1qTLg1ikn0kWEAhlsLV5XENJvsBpiIgcwzXpDujuBPXlt4xAbbMBMcHKNq+HqeSoadZDbzSjuFaLpHCV80I6WbPOiOI6a1fZfi7s7G5z67hkzB2fgmCVzOXXou67ZHAMnv7+APKrmpFdVIfhSaFCRyIi8mla+3R3FulnU8ekoLW+GvWlLNKJyLtxJN2NotRK9I9RIzigbcEpFovQKyIQAJBX1SREtC6TiEV479aReHrWQIQGyl1+vdBAOYJVMtS3GLjVlwcKVEgxc5B1O7bVe4oFTkNE5Pta60+NpLNIP4c6JgUAUF/CJVhE5N1YpDugu73erntnG25+fzsqG8/dsspWpOdXevZe6UqZBBcPisGdk3u77Zp//98hDH/hN6zaXei2a1LXXT3Cug7wf3tL3LIEgojIn9kbx3G6+znU0ckAON2diLwfi3Qn6MpaXIPJjN0FtdiWVw2Z5Nzq3l6kV3l2kV5cp0Vjq3tHtONClDBbPP93468mpoYjUq1AQ6sR+4vrhY5DROTTbGvS2TjuXLaR9ObqUjQ1efbMRCKizghepC9fvhwpKSlQKpUYO3Ysdu7c2enxdXV1mD9/PmJjY6FQKNCvXz/8/PPPbkrblqgbq9JFAD6aNxpv3JgOtfLc9dXeUqQv+m4/hjz3G77NPOm2a147IgE7npyOJdcMdds1qeukEjGW3zwCO56cjpHJXJNOROQqFovF3t2d093PJQ/UICA0CgBw+PBhgdMQEfWcoI3jVq1ahYULF2LFihUYO3Ysli1bhpkzZ+Lo0aOIioo653i9Xo+LLroIUVFR+OabbxAfH4+CggKEhIS4P/wZutLTWioRY1r/c38mm96R3lGkHytvBAAku7G5nW3tu1Zvgt5oZhM5DzSmV5jQEYiIfJ5J3wqTwbpkjkV6+8KS+qO4tgIHDx4UOgoRUY8JOpK+dOlS3HXXXZg3bx7S0tKwYsUKqFQqfPjhh+0e/+GHH6Kmpgbff/89Jk6ciJSUFEyZMgXDhg1zc3Ir25r0ruw8dbyyCQu/ysay33Pa/X6viCAA1unkWr1n7pfe0GpAaX0rAKCvGzq7n2nZ7zkY+vyv+PBPrjPzVPlVzXhl7RH8yD3tiYhcQtdUBwCQyBSQyBXChvFQockDAAA7duxATk4OcnJyYDJ55ucqIqKOCFak6/V6ZGZmYsaMGafDiMWYMWMGMjIy2n3Pjz/+iPHjx2P+/PmIjo7G4MGD8dJLL3X6H1+dToeGhoY2X0IoqtXiu6xirD1Q1u73Q1Uy/PO6oVh19zhI21mz7gmOlVvXd0VrFOd0qHe1aI0SBpMFR8sa3Xpd6rrfD5XjnY15WMkHKURELqFrrAMAyFTufVDuTUKT+gEAMrIO4OFVe3DX8jXIy8sTOBURUfcINt29qqoKJpMJ0dHRbV6Pjo7GkSNH2n3P8ePH8ccff+CWW27Bzz//jNzcXNx///0wGAx49tln233PkiVL8Pzzzzs9/5ksXZjwnhKuwqJLB0DTQXErEonwl1GJzo7mVLap7u7YH/1slw2Oxbje4Ujx4D3k/d3s4XF4ee0RZBXWIa+yCamRQUJHIiLyKboma3NOeSCL9I6EJllH0rV1lQgIiRQ4DRFRzwi6Jr27zGYzoqKi8N5770EikWDkyJEoLi7Gq6++2mGRvmjRIixcuND+54aGBiQmOqcY7s4WbMnhgbhnSqpTriuU46fWywtRpAerZAhWyWAwmaE1GKFpp/keCStKrcS8CSmICwlARCCnYRIROZtturtcpRE2iAcLCA6HPFADfXMDaouOQakOEToSEVG3CVakR0REQCKRoLy8vM3r5eXliImJafc9sbGxkMlkkEgk9tcGDhyIsrIy6PV6yOXyc96jUCigULi2YOjKmvTtx6uxt6gO6YkhGNs7vN1jsgpr8fXuk0gKU+G+qZ5X0C+6dADmTkiBWKDZ+B/9mY9//XoUN49NwlOz0oQJQZ16+nL+vRARucrpIp0j6Z0JikxATfMh1BYeQeygcULHISLqNsHWpMvlcowcORLr16+3v2Y2m7F+/XqMHz++3fdMnDgRubm5MJvN9tdycnIQGxvbboHuat3Zgm3j0Uos+eUIfj1Y3uExpXWt+O/OQvx6sP1160ITiUSIDwlAbHCAINcPC5SjWW/iXtxeILeiEbkV3KOWiMiZ7EU6p7t3KigqAQBQW9h+s14iIk8naHf3hQsX4v3338fHH3+Mw4cP47777kNzczPmzZsHAJgzZw4WLVpkP/6+++5DTU0NHnzwQeTk5GDNmjV46aWXMH/+fKF+BABd24JtUJwGVw+PR3pSSIfH9ImyruHNq2iCpSvD827U2GrApxknsON4tWAZpg2IwpoHJuGLO/lU3JOt2JSHGUs349/rjwkdhYjIp+garQ+p2Tiuc2pbkV7Qfo8jIiJPJ+ia9BtuuAGVlZVYvHgxysrKkJ6ejrVr19qbyRUWFkIsPv0cITExEb/++isefvhhDB06FPHx8XjwwQfx+OOPC5K/O2vSrxgWhyuGxXV6TEqECmIR0KgzoqJRh2iN0sGEznO0rBHP/HAQscFKZCyaLkgGjVKGQXHBMJstaNIZEaTwqpYKfmNiagQA4NeDZajXGty+EwARka/imvSusY2kN5SegEmvEzgNEVH3CV7lLFiwAAsWLGj3exs3bjzntfHjx2P79u0uTtU9XRn0zsirhs5owpD4YIQHtb9GXiGVIDk8EPlVzcitaPKoIj3n1PZrQjSNO9PXu4uw5JcjmDkoBkuuGSJoFmrf4HgN+kercbS8EWv2leLmsUlCRyIi8gn6ZnZ37wp5YLC9eVxDeSEAzsAjIu8i6HR3b3d6JP38VfrLvxzGbR/twp7Cuk6Ps01597T1vJoAKUanhGJEUqigOcIC5ahp1mNPYa2gOahjIpEI1420jmJ8k1kkcBoiIt9gNptPb8HG6e6dEolEUEenAADqS44LG4aIqAcEH0n3Zt1pHJcaGQSDyYJIdeed5vtEBWHdoXKPK9IvHxqHy4d2Pl3fHcanhuOre8ZjeCdr+0l43DOdiMi56urqYDGbAACyABbp56OOSUb18X1oKM0XOgoRUbexSHeCrkx3X3pDepfO1SfSM0fSPYVKLsWYXmGwWCxo1hkRyHXpHilKrcTUfpGo1xrQ2GoUOg4RkderqqoCYJ3KLT5jK1pqnzo2BQBQX8IinYi8DyscB3S1cZzFYkFOeROCA2SIUisg7mSj8UHxGlycFo0RycJOKz9TbbMed36yG/2i1XjxqsGd5neHDUcq8PT3BzAoToP35owSNAt17O3/GwGFlB8kiYicwVakK4PDBE7iHWzT3ZsqTkKnY/M4IvIuLNKd4HwD6VqDCTOXbQYAHPr7TKjkHf/aB8R4XuGZU96IzIJalNW3Cl6gA0B4kBzFdVq0Gkwwmy0ekYnOZSvQLRYLtAZTp//uiYioc5WVlQCAAE24wEm8g0ITBkVQCHRNdTh69CiGDGGzWSLyHmwc5wBbbXi+Pc2bdEaEqmRQSMUIkHnfyGJOha2zu2esKx4UF4yP5o3GlsensUD3cH/mVmHmss14/Nv9QkchIvJq9pF0DUfSu0IkEiE0qR8A4ODBgwKnISLqHg5tOUB0ar67+TxD6VFqJfYsvhgWi8X+ns4U12lxoLgeiaEqpMUJvxdqbnkjAKCvwNuv2UjEIkzrHwUAaDWYoPTCBx/+QqOUIae8CSeqW7hnOhGRA05Pd+dIeleFJg1A2aGdLNKJyOtwJN0BtnLbfJ6RdJPZArO5awU6APxny3Hc82kmVu856WBC58ittI6k9/GgDt17Cmtx0dJNuOn97UJHoU7Y9kzXG83IyKsSOg4RkdeyTXdXcrp7l4Um9wcAHDp0SOAkRETdw5F0B4htRfd5RtI3HKnA3Z/uxvjUcHx+57jzntfT9kq35ejjIdPdASBao8SxiibIJCI06YwIYpd3jyQSifDi1YMREaRASkSg0HGIiLwWp7t3X2iStUjPycmBTqeDQtH5NrhERJ6ClY0DxPbp7p1X6Q2tBpgtZxT152EbsT7mAUW6xWLBA9P74lh5k/3hgSeICwnAh7eNwoikUBboHm5UCj9QEhE5qrq6GoB1urttv3TqXGB4LGQBgTBom3Hw4EGMGDFC6EhERF3C6sYBtpr7fGvSLx8ah0l9Is7bBd7GVgwX12mh1ZsQIBduzbVIJMItY5MFu35nLhwQDQDQGU3c6svDVTbq8F3WSSikYtw2sZfQcYiIvM7p6e5h0NZVCpzGO4hEImhie6P6+H5kZmaySCcir9GjNenHjx93dg6vdLpI77z8lkvFiNIoEa1Rdum84UEKhKpksFiAvEphR9Nt25x5ovyqZsxe/icufn3zeTvsk7AyC2qw5JcjeGdTHkwe+u+JyN/wXu49jEYjamtrAQBKdajAabxLcFwKACAzM1PYIERE3dCjIr1Pnz6YNm0aPvvsM7S2tjo7k9ewTV8/X324YlMeLlm2GR9vO9Hlc9tG04Uu0l//PQeDnv0Vb2/MFTRHe6I1ChwqqUdBdQtO1mqFjkOduHBANEJVMpQ36LD5GEeAiDwB7+Xew7YeHSIR5EHBwobxMsFxvQGwSCci79KjIj0rKwtDhw7FwoULERMTg3vuuQc7d+50djaPZy/SzzORvbCmBUfKGlHbou/yuT2leVxeRRO0BpNHrvtWyaV479ZRyFh0IRLDVELHoU7IpWLMTo8HAHy1q0jgNEQE8F7uTcrLywEAcpUGYjGXd3WHJs66xGrfvn3Q67v+OYyISEg9KtLT09PxxhtvoKSkBB9++CFKS0sxadIkDB48GEuXLrWvm/J14i6uSb97cm98escYe5HSFX2i1FDKxGg1CNscxt7Z3YO2XzvTtAFRiA0OgMFkFjoKnccNoxMBAOsOlaOqSSdwGiLivdx7VFRUAAAUHEXvNlVoNEJCQqDX67Fv3z6h4xARdYlD+6RLpVJcc801+Prrr/HKK68gNzcXjzzyCBITEzFnzhyUlpY6K6dn6uKa9JSIQEzuG4le3diC6paxSTj4/CV4alaaIwkd9tMDk/HD/IkYlhgiaI6OVDfpcPP72zH2pfUs1D3cwFgNhiUEw2i2YHVWsdBxiOgUv7+XewFbkS4P1AicxPuIRCIMHjwYALBr1y6B0xARdY1DRfru3btx//33IzY2FkuXLsUjjzyCvLw8rFu3DiUlJZg9e7azcnqkrq5JX/LLYTz45R4cKK7v8rmVMgkk4q5t2eZKQQophiWGINADp7sDQKhKjiNljahp1mPfyTqh49B53DMlFY9d0h+z0+OEjkJEp/j7vdwbsEh3zJAhQwCwSCci79Gjymvp0qX46KOPcPToUVx22WX45JNPcNlll0Esttb8vXr1wsqVK5GSkuLMrB7nzH3PLRYLRB3sg77paCWOlDXiupEJ3b5Gi94IEUSCbMN2rLwReZXNGBSn8dg132KxCEv/MgxJYapuzVQgYVw2JFboCER0Cu/l3sM+3T2Q0917gkU6EXmbHhXp77zzDm6//XbcdtttiI1t/0N3VFQUPvjgA4fCebozB7rNFkDSwcD3ggv7oKy+1d4Mrqse+nIPfthbglevG9ajAt9RP+0rxRvrj+H6kQl49fphbr9+V03tHwUAMJktHf4dkGcprG7BodJ6XDKYRTuRUHgv9x72xnEcSe8RW5F+6NAh7NmzB4GB1of6qampkEjYiI+IPE+PivR169YhKSnJ/rTdxmKxoKioCElJSZDL5Zg7d65TQnoqEU5XhGaLBRK0XyFePrRnU3tDVHJYLMDRsoYevd9Ruae2f+vuwwV30xvNuP/zLOzMr8amR6chNFAudCTqxJGyBlyybAsCZBJM7BMBtVImdCQiv8R7ufdg4zjHREVFIT4+HsXFxbjtxQ+QMGwymqpK8P78WejXr5/Q8YiIztGjNempqamn9+w8Q01NDXr16uVwKG8hOuO311HzOIvFglfWHsHyDbnd7tTeP0YNADhaLsw2bHkV3lGky6VinKxtQUOrEX/mnfvvkjxL/2g1ekcGQmsw4ad9bEhFJBTey73H6TXpLNJ7avTo0QAAfVM91NFJCIpgbxQi8lw9KtItHRSkTU1NUCqVDgXyJm3XpLd/TLPehHc25uHVX4+et8Hc2fpFnyrSBRhJN5ktOF7VDMDzi3QAWHx5Gn766yRcxunTHk8kEuHG0YlIjQz02IaERP6A93LvcXpNOqe795StSK8vzhM4CRHR+XXrE/LChQsBWD9kL168GCrV6WZiJpMJO3bsQHp6ulMDerIz16R3VoDfPrEXmnQGKGXdeybSL9paHJc36FDXokeIyn3TuItqWqA3miGXipEQ6plN4840oU8EAMBstnTaxI88w7yJvXDX5N78eyISAO/l3sVisZxek87p7j02ZswYACzSicg7dKtI37NnDwDrDWP//v2Qy08XjXK5HMOGDcMjjzzi3IQe7Ow16e0JUkix+Iqe7XWuVsoQHxKA4jotjpY1Ymzv8B6dpyfqtAakhKsQqJB6xFZwXfH09/vx8/4yfHTbaI/d152sZJLTD6zqWwwIVnFdOpG78F7uXZqamtDa2gqAjeMcMWrUKABAS20FdE1d3xKXiEgI3SrSN2zYAACYN28e3njjDWg0/n2zELXp7t5+kV7R2IptudWI0igwITWi29cYEKNGcZ0WOeXuLdLTE0Ow8dFpMJm7OUdfQFWNetQ067Epp5JFuheoaGjFgi/2ILeyCRmLLoRCyg67RO7Ae7l3sU11V6lUkMq5DKGnQkJCkJKSghMnTqCm4DDXpBORR+vRmvSPPvqIN3W0XZPeUS17uLQRD63Kxgs/He7RNfrZm8c19uj9jvKWUXQAuHdqKr68exzum5oqdBTqgvAgBQprWlDTrMe6Q+VCxyHyO7yXewdbkR4WFiZwEu83ePBgAEDNiZ59JiMicpcuj6Rfc801WLlyJTQaDa655ppOj/3uu+8cDuYN2tSvHRTpQQoJJvYJR1JYYI+ucd3IBEzuG4GBMe79IPXK2iOQikW4cUwS4kMC3Hrtnko/NXpusVise6Z70QMGfyQRi3D9qAS8+UcuVu0q6vFWhUTUdbyXexeTyWRfnhAUFNTtBrTU1pAhQ/DTTz+h5sRhJI2aLnQcIqIOdblIDw4Otjd5Cg5m4xIAbZpedTTdfWRyGD6/c1yPr5EaGYTUSPd2V7dYLPgsowCNOqPXFU5vb8zF59sL8ejM/rhqeLzQceg8rh+ZiDf/yMXW3CoU1bQgMczzmxQSeTPey71LXl4eln27EQBQ2mRE3Km16dR1FrMZ+fn5AIDIyEgA1pH0jnY3ICLyBF0u0j/66KN2/7c/E3dhTXpZfStqmvWI0igQEaRwUzLHVDTq0KgzQiwCUiK8q2hqbDWiuE6LzTmVLNK9QFK4ChP7hOPP3Gp8nXkSCy/qJ3QkIp/mqnv58uXL8eqrr6KsrAzDhg3Dm2++ae+m3Z6vv/4azzzzDE6cOIG+ffvilVdewWWXXdbmmMOHD+Pxxx/Hpk2bYDQakZaWhm+//RZJSUlOy+0NbE1qAzTu60vjS5pryvDc6kKExdeh9HAxRCIxWhuq0dpQI3Q0IqIO9WhNularRUtLi/3PBQUFWLZsGX777TenBfMGoi6sSf9iZyEu+/cWLPs9p8fXeXtjLv7ybga25VX1+BzdIRGL8NCMvpgzPsXrmnldPzIBH942Ci9ePUToKNRFfxmVCADIrRCm7wKRv3LWvXzVqlVYuHAhnn32WWRlZWHYsGGYOXOmfS312bZt24abbroJd9xxB/bs2YOrrroKV111FQ4cOGA/Ji8vD5MmTcKAAQOwceNG7Nu3D88884xf7t+ua24AAMhUaoGTeC9VWAzU0UlQR8YjMNL6AJ9bsRGRJ+tRkT579mx88sknAIC6ujqMGTMGr732GmbPno133nnHqQE9nW003dLBonS5RISIIAXCAns+in6wpAE782uw/6R7tgyJCFLgoRn98NyVg9xyPWfqHRmECwdEI0Au8arO9P5s5qAY/PzAZLx9y0ihoxD5FWfdy5cuXYq77roL8+bNQ1paGlasWAGVSoUPP/yw3ePfeOMNXHLJJXj00UcxcOBAvPDCCxgxYgTeeust+zFPPfUULrvsMvzzn//E8OHDkZqaiiuvvBJRUVGO/dBeSN9svffLVe5d+uar1LG9ALBIJyLP1qMiPSsrC5MnTwYAfPPNN4iJiUFBQQE++eQT/Pvf/3ZqQE9nG03vaGnTggv7YvfTMxyaxjsg+lSH9zL3jDR6e3G7es9JXPz6Jvx7/TGho1AXKGUSpMWxwzSRuznjXq7X65GZmYkZM2bYXxOLxZgxYwYyMjLafU9GRkab4wFg5syZ9uPNZjPWrFmDfv36YebMmYiKisLYsWPx/fff9+Cn9H5620h6AIt0Z9DE9gYA1BUfFzgJEVHHelSkt7S0QK22Fo6//fYbrrnmGojFYowbNw4FBQVODejpbCPpHa1J1+pNDhe9/U9tw3bYTUX6rR/swOR//oGtx9wzvd7ZDEYLcsqbsCmnUugo1EUWiwWfZpzApW9sQXGdVug4RH7BGffyqqoqmEwmREdHt3k9OjoaZWVl7b6nrKys0+MrKirQ1NSEl19+GZdccgl+++03XH311bjmmmuwadOmDrPodDo0NDS0+fIFuibrSLqMI+lOobGNpJcch9lsFjgNEVH7elSk9+nTB99//z2Kiorw66+/4uKLLwZgvbH6256rtpH0jurwuz7ZjdQnf8aPe0t6fA3bKGNuRSP0RtffUHLKm1BUo0WQsst9BT3KhQOj8O+bhmPlvNFCR6EuEolE+Hl/GQ6XNmDVriKh4xD5BU+9l9sKp9mzZ+Phhx9Geno6nnjiCVx++eVYsWJFh+9bsmQJgoOD7V+JiYnuiuxS9unuHEl3isDIeEhkchhbm/1uYImIvEePivTFixfjkUceQUpKCsaOHYvx48cDsD6JHz58uFMDejr7mvQORtIbWw0AAJWs5w3Y4kMCEBwgg8FkwTEXN9eqbzGgqkkHAEiN7Nne7kKLCFLgymFxCFHJYfbyqfv+5Oax1o7Nq3YVev2SCyJv4Ix7eUREBCQSCcrLy9u8Xl5ejpiYmHbfExMT0+nxERERkEqlSEtLa3PMwIEDUVhY2GGWRYsWob6+3v5VVOT9D/yMRiP02iYAbBznLGKJFCGJ1iWI+/fvFzgNEVH7elSkX3fddSgsLMTu3buxdu1a++vTp0/H66+/7rRw3sC2NUpHa9K/unc8Mp+egUl9I3p+DZEIabHWUY2DJa6dvpdbaX0IEBushFopc+m1XGlbbhWuWv4nFn6VLXQU6qKZg2Jw/9RUfHHXOEjO3N+QiFzCGfdyuVyOkSNHYv369fbXzGYz1q9fby/6zzZ+/Pg2xwPAunXr7MfL5XKMHj0aR48ebXNMTk4OkpOTO8yiUCig0WjafHm7uro66wcMkQgypXc+OPdEYSkDAbBIJyLP1eP5zDExMec8Je9sT1Rfdb416QqpBIogx7cxS4vTION4NQ65ukivsD6x7xPl3dPqZFIxsovqcKK6GSazhUWfF5BLxXjskgFCxyDyK864ly9cuBBz587FqFGjMGbMGCxbtgzNzc2YN28eAGDOnDmIj4/HkiVLAAAPPvggpkyZgtdeew2zZs3Cl19+id27d+O9996zn/PRRx/FDTfcgAsuuADTpk3D2rVr8b///Q8bN2507Af2MtXV1QAARVAwROIejatQO8KSWaQTkWfrUZHe3NyMl19+GevXr0dFRcU5jTeOH/efjpni86xJn/rqBkglYnxx51hEaXq+v+u0/lGQikW4oF9kj8/RFbYiPTXSu4v04YkheOXaIZjaP4oFupepadbj28yTuGRwDBLDVELHIfJZzrqX33DDDaisrMTixYtRVlaG9PR0rF271t4crrCwEOIzCswJEybgiy++wNNPP40nn3wSffv2xffff4/Bgwfbj7n66quxYsUKLFmyBA888AD69++Pb7/9FpMmTXLCT+497EW6OlTgJL7FNpJ++PBhGI1GSKXe2YOHiHxXj/6rdOedd2LTpk249dZbERsba2+e5o9EnYykG0xmnKhuAWAdJXTEpL4RDk2Z76rbJ/XCmF7hiA3u+QMFTyCViHHDaOsaZ6PJDKmEIxDe4m9fZWPD0UrUtOjxOEfWiVzGmffyBQsWYMGCBe1+r73R7+uvvx7XX399p+e8/fbbcfvtt/c4ky+wFelKFulOpY5KhFSpQmtrCw4cOID09HShIxERtdGjIv2XX37BmjVrMHHiRGfn8Tqd7ZMuFonwvwWT0KgzeM367tjgAMQGBwgdwylOVDXjqe/3o6pRj18fvkDoONRFN4xOxIajlfh6dxEentHP4QdcRNQ+3ss9n71I14QJnMS3iMRihMSnoipvP3bs2MEinYg8To8+/YaGhiIsjDcMoPPu7hKxCEMSgjEhNcIpU64zC2qwfEMu9hTWOnyu9uiMJmQW1KJea3DJ+d0tPEiOnfk1OFreiILqZqHjUBdNHxiNSLUCVU16/Hao/X2WichxvJd7vpqaGgCc7u4KIQl9AQDbt28XOAkR0bl6VKS/8MILWLx4MVpaWpydx+t0tib9eGUT5ny4E0+tdk5jklW7ivDqr0ex4UiFU853ttyKJlz7zjZMeXVDh1vKeRO1UobXb0jHH3+bguRwdsX1FjKJGDeOtu5v/MWOjrdbIiLH8F7u+Tjd3XVCEvoAYJFORJ6pR9PdX3vtNeTl5SE6OhopKSmQydpO5c7KynJKOG8gshfp5xa1FY06bM6pRG8n7Tdu24btUKlrOrzbO7tHBvlMn4HLh8YB4Lp0b3PD6ES8tSEX2/KqcbyyCb29vJEhkSfivdzzsXGc69iK9CNHjqC2thahofwdE5Hn6FGRftVVVzk5hvcS2ae7n/u93hGB+Nf1w6CUOac4TIsLBgCXbcPW2GpEkELq9duvnUlnNOGvX+xBxvFqbH3sQgSrvKM3gL9LCFXhxtFJiAtWIkQlFzoOkU/ivdzzcU2668gDNUhOTkZBQQF27tyJmTNnCh2JiMiuR0X6s88+6+wcXquzfdKjNEpcNzLBadcaGKsGAJTUt6K2WY/QQOcWL/83Lhm3jE1Cq8F8/oO9hEIqQUF1CxpbjdiSW2kfWSfPt+SaIUJHIPJpvJd7vjNH0g3aJoHT+J5hw4ahoKAA27dvZ5FORB6lx0O8dXV1+M9//oNFixbZG5tkZWWhuLjYaeG8gbiT7u4782vw0s+H8dO+EqdcS62UITncum/0YRdNeReJRAiQS1xybqEsviINP/11EmYNiRU6CvVAUU0L9p+sFzoGkU/ivdyz2f5OuCbd+SxmMxISrAMpf/zxB0wmk8CJiIhO61GRvm/fPvTr1w+vvPIK/vWvf6Gurg4A8N1332HRokXOzOfxxJ2sSc8uqsV7m49j/WHnNXpz1bp0o8mMxT8cwCcZJ6A3+s5IOgBM7BOBwfHBMFsAU3sd/shj/W9vCS54dQOe/uGA0FGIfA7v5Z6tubkZWq0WANeku0JzTRk2l1k/Bm/bsQu5ubkCJyIiOq1HRfrChQtx22234dixY1AqlfbXL7vsMmzevNlp4bxJe6XfkPgQ3DW5F6b2j3TadWxF+kEnr0svrGnBJxkFWPLzEUidsF2cp3nhp0MY9Y912JFfLXQU6obxqeGQicXYW1SHvUV1Qsch8im8l3u28vJyAIBYJodUESBwGt8U0ScdEpkcRp0WJ06cEDoOEZFdj4r0Xbt24Z577jnn9fj4eJSV+de+xuJTv8H2RtLHp4bjqVlpmJ0e77TrDU4IRv9oNRJDnXvDtnV27x0ZCLEPFul1LQbUthiwKadS6CjUDRFBCswaGoteEYGo1xqEjkPkU3gv92wVFdZZeIrAYJ/ZccXTiCVShCYNAADs3btX4DRERKf1qHGcQqFAQ8O5I7k5OTmIjHTeqLE3OL0m/dwifVtuFYrrtBieFOq0junT+kdhWv8op5zrTHmVzQDgU53dz3Tn5F64flQCRiVzyqC3+fvsQQiUS33y4RGRkHgv92y2Il0eqBE4iW8L7z0IVXn7kJ2dLXQUIiK7Ho2kX3nllfj73/8Og8E6siUSiVBYWIjHH38c1157rVMDerrTa9LP/d4XOwvx6Df7sOWY54/enrlHui8aGKvBuN7hkIhFPrfm3teplTJ7gd7QytF0ImfhvdyznTmSTq4T3msQAI6kE5Fn6VGR/tprr6GpqQmRkZHQarWYMmUK+vTpA7VajRdffNHZGT2abWzP3E6VPjBWgwv6Rdo7sjuLwWTGgeJ6HClz3rr0vEprkZ7qoyPpAPDp9gJMfPkPfLA1X+go1E3FdVrc/P52XLpsC4wmPmQhcgbeyz2bfSQ9iCPprmQr0o8ePYrm5maB0xARWfVountwcDDWrVuHP//8E3v37kVTUxNGjBiBGTNmODufx7MtE2uvcdz8aX0wf5rzr/nupjz867cczE6Pwxs3DnfKOcf0CoNCKka/aLVTzueJRLDuMb8ppwL3TU0VOg51Q3igHIdLG1DbYsD6IxWYOShG6EhEXo/3cs9maxwn50i6SwWERkGhDoWusRaZmZm44IILhI5ERNT9It1sNmPlypX47rvvcOLECYhEIvTq1QsxMTGwWCx+19yksy3Y9p2sgwgipEYFQiXv0fOQdg1JCAEAp+4d/eRlA512Lk916eAYRGuUmNw3Qugo1E1KmQQ3jE7Cik15+DSjgEU6kYN4L/d8nO7uHiKRCCGJfVF+aCd27NjBIp2IPEK3prtbLBZceeWVuPPOO1FcXIwhQ4Zg0KBBKCgowG233Yarr77aVTk91unGced+76//3YMr3tqKw07e03xIvPWGfbyqmWt0uyE8SIGL0qKhlEnQojcKHYe66ZaxSRCJgK25VfYeCkTUfbyXewdOd3ef0IS+AIDt27cLnISIyKpbRfrKlSuxefNmrF+/Hnv27MF///tffPnll9i7dy9+//13/PHHH/jkk09cldUj2QYb2htJj1YrERushEYpc+o1wwLlSDi1BduBYsdH07/JPIlr39mGlX/6/lrtXSdqcNHSTbjrk91CR6FuSgxTYfqAaADAZ9sLBE5D5L14L/cOHEl3n5CEPgCAjIyMdnfrISJyt24V6f/973/x5JNPYtq0cxdaX3jhhXjiiSfw+eefOy2cNxB1MpL+1b3jkbFoOvq6YJ33MCdOeT9QXI/MglqU1rc6fC5PFxmkwLGKJmQW1HI03QvNnZAMwNrokB+kiHqG93LvwC3Y3Cc4rjckEglKS0tx8uRJoeMQEXWvSN+3bx8uueSSDr9/6aWX+t0WFuIORtItFgtqmvXQGU0uue6QBOuT9X1OKNLtnd19dPu1M6VEBOK9W0dix5MznNongNxjYmoEfvrrJHx6x1iumSXqId7LPZvJZMLhw4dRVVUFAJCrOJLuahK5Av379wfAKe9E5Bm6VaTX1NQgOjq6w+9HR0ejtrbW4VDepKM16Q1aI0a8sA79n17rkkJ96Kl16fuK6xw+1yMX98eSa4ZgXO9wh8/lDS4eFIPgABnX83shsViEwaf+7VssFo6mE/UA7+WeLS8vD7cv/Rpms3W7SbPEuUvmqH3Dhg0DwCKdiDxDt4p0k8kEqbTj0UeJRAKj0b+mEHe0Jr351FRqmUQEhVTi9OsOOlWoaPVmh6dtD0sMwU1jkpDk5P3cPVVdix5Xv/0nxr64nlPevdQP2cW4ZNkWbDlWJXQUIq/De7nnkyms92OZMhBisfM/Q9C50tPTAVjXpRMRCa1b830tFgtuu+02KBSKdr+v0+mcEsqbiOxbsLV9PS4kALkvXooWg2umuwcHyLDzyemIVCscmvbb0GpAfYsB8SEBEIv9Y/pwcIAMVU06aA0m7Cmsw8Q+3JLN22QX1eFoeSM+2JqPC/pFCh2HyKvwXu75dM3WpWwyle8vQ/MUw4cPBwBkZmaitbUVSqVS4ERE5M+6VaTPnTv3vMfMmTOnx2G8keRUXWs6u0oHIJWIoZF0a7JCt0RpHL+BrD9cjodX7cWkPhH47M6xTkjl+UQiEZbdkI74EBVignkT9kbzJvTCym0nsPlYJUrqtIgLCRA6EpHX4L3c8+mbrVu3ygJYpLtLUlISoqKiUFFRgd27d2PSpElCRyIiP9atIv2jjz5yVQ6vJRHbRtLbFunb8qrwwH+zMTQhGB/eNtpl17dYLGjQGhGs6tmatbyKZgBAsp9MdbcZmRwGAKjXGqCSSyBz4cMUcr6kcBVemD0Y43qHsUAn6ibeyz2frqkOACBXOX93GGqfSCTCxIkTsXr1avz5558s0olIUKxMHGQr0s8eSW/QGlDVpENdi95l184pb8SYl9bj4mWbenyO3Ar/6ex+todXZWPkC+uQkVctdBTqgf8bl4w+UfwAS0S+xz6SzunubjVx4kQAwJ9//ilwEiLyd9yDykEdFekT+0Tg5wcmQypx3TrvhNAA1DTrYTJbejzl1779WpT/fRBQyiQwmi3YXVDLdc1eqqHVgFU7ixCklOKmMUlCxyEicorT0935INKdbEX6tm3bYLFYuNUnEQmGI+kOsm3BdnaRrlbKkBanQb9o191gVXIpBsZaz59V2P3tcowmM05UW6e79/HDIv3eKb3xx9+mYOFF/YSOQj30+6FyvPjzYSz7PQcGk1noOERETmFrHCfnSLpbWMxm5OfnIygoCAqFAtXV1cjJyRE6FhH5MRbpDpLaRtLPWpP+beZJ3Pz+dqz8M9+l1x+eGAoA2FNY1+33FtdpYTBZECCTINYJTei8TXJ4IHpHBqHVYEJ1E7sZe6NZQ2MRqVagvEGHn/eXCh2HiMgp9E2nuruzcZxbNNeU4bnV2Xh89UEowuMBcMo7EQmLRbqD7I3jzhpJz6tswra8apyobnHp9UckhwDo2Uh6cnggDj4/Ez8umOg326+d7fMdBRjxwjos+/2Y0FGoBxRSCW4dlwwA+GBrPiyWc3dZICLyNjquSXc7VVgM1NFJiEgdAoBFOhEJi0W6g2zT3Y1nFelXpsdh2Q3puGp4vEuvbxtJP1jcAJ2x+3uyByqk6OvCKfmeLj4kAC16E/YX1wsdhXrolrFJkEvF2HeyHpkF3X9YRUTkafS26e5ck+52oUnWJXAs0olISCzSHdTRFmwDYjS4ang80hNDXHr95HAVwgLl0JvMOFjS0K33/n6oHL/sL0Vlo/9O9Z7YJwKr75+A1fdPEDoK9VB4kAJXp1sfhn207YSwYYiIHNTS0gKT3npf5ki6+4UmWov0o0ePoqqqSuA0ROSvWKQ7qKPu7p9mnMDz/zuIPT2Yht4dIpEIw089COjuuvS3NuTivs+zsDO/xvnBvIRMIsbwpFCYzBZ7p3vyPndM7oUHpvfFs1ekCR2FiMghNTXWe7JEJodEphA4jf+Rq9To3bs3AGuXdyIiIbBId1BHRfpvh8rx0Z8ncLyy2eUZHprRDz/9dRLmjE/u8nssltNFqT92dj9TboV1v/kb3s2AkR3CvVK/aDUWXtQPUWr/a4BIRL6luroaAKBQh3ILMIGMGDECAKe8E5FwWKQ7SNLBFmxXpcfj/qmpGBircXmGIQnBGBwfDJmk63+drQYzxvcOR5+oICSHq1yYzvMlhwfCYrHAZLagoMa1jf7ItUrrtVjyy2HUtxiEjkJE1CNnFukkDBbpRCQ0jyjSly9fjpSUFCiVSowdOxY7d+7s0vu+/PJLiEQiXHXVVa4N2AlJB1uwXTsyAY9dMgBpca4v0nsiQC7Be3NG4feFU6CUSYSOIyiZRIyv7x2PnU/NQGqkf88q8Hb3fJqJdzcdx2c7CoSOQkTUI7YiXakJEziJ/7IV6bt374ZO5799e4hIOIIX6atWrcLChQvx7LPPIisrC8OGDcPMmTNRUVHR6ftOnDiBRx55BJMnT3ZT0vZ1tAXbql2F+HJnIepa9G7J8eb6Y7j49U349WCZW67na/pEqSEVi7C3qI5T3r3YvIkpAICP/jyBVkP3dzsgIhKabU26kiPpgklJSUFkZCR0Oh2ysrKEjkNEfkjwIn3p0qW46667MG/ePKSlpWHFihVQqVT48MMPO3yPyWTCLbfcgueff97e3EMoYvua9LavL/nlCJ74bj+qmtzzBLa0oRU55U1d3oLq7Y25uPuT3dhwtPOHIf7kqre3YfbyP7H9uP820vN2lw+Nw+iUUNw3NVXoKEREPcLp7sITiUSYMMG66wunvBOREAQt0vV6PTIzMzFjxgz7a2KxGDNmzEBGRkaH7/v73/+OqKgo3HHHHee9hk6nQ0NDQ5svZzq9Jr1tlX7hgChMHxCFEJXcqdfryOkO710r0jPyqvHboXJUNnAal01arBoBMgmKarku3VtZly5MwB2Tevn9Mg4i8k726e4s0gU1ceJEACzSiUgYUiEvXlVVBZPJhOjo6DavR0dH48iRI+2+Z+vWrfjggw+QnZ3dpWssWbIEzz//vKNRO9TRmvSlf0l32TXbMyLZejPfe7IeOqMJCmnnBUpehbWze6qfd3Y/08KL+mPx5YMQIGdx5wuOlTdCazBhaEKI0FGIiLrMPpLONemCOrNIt1gs7LRPRG4l+HT37mhsbMStt96K999/HxEREV16z6JFi1BfX2//KioqcmomSTvT3VsNJmw5VunyPdLP1DsiEOGBcuiNZuw/Wd/psc06I0rqWwEAqZGB7ojnFSLVCgTIJcirbOKe6V7um8yTuOj1zXj2x4OwnPUAjYjIk3Ek3TOMHDkSSqUSlZWVHQ4cERG5iqBFekREBCQSCcrLy9u8Xl5ejpiYmHOOz8vLw4kTJ3DFFVdAKpVCKpXik08+wY8//gipVIq8vLxz3qNQKKDRaNp8OdPpIv10lV7ZqMOtH+zEze/vcOq1OiMSiTA6xfrUfeeJztdU2/ZujwiSu206vrd4e2Mupr+2CW/9kSt0FHLABf0iIJeKsaewDru72KeBiMgT2BrHcU26sBQKBcaPHw8A2Lx5s8BpiMjfCFqky+VyjBw5EuvXr7e/ZjabsX79evt/GM80YMAA7N+/H9nZ2favK6+8EtOmTUN2djYSExPdGR9A+yPpZosFA2LU6Bft3qnko3tZi/Rd+Z0X6bmVjQDA7cbaMbZXOCRiEfQmM0dgvViUWolrR8QDAN7ddO7DOyIiT2Q2m093d9ewSBfaBRdcAIBFOhG5n6Br0gFg4cKFmDt3LkaNGoUxY8Zg2bJlaG5uxrx58wAAc+bMQXx8PJYsWQKlUonBgwe3eX9ISAgAnPO6u9gax5nPKOiSwwOx9qEL3J5l7KkifXdBLUxmi/0BwtkGxmrw8Ix+iAlWuDOeVxiRFIKdT05HeBB/N97uzsm98eWuIvx+uALHyhvRN1otdCQiok5VV1fDfGpmniIoRNgwZC/SN23axHXpRORWghfpN9xwAyorK7F48WKUlZUhPT0da9eutTeTKywshFjsuUvnT2/BdrpI1+pNaGw1IFAhRaDCfb/igbEaLLyoH0Yld/70fUCMBgNinDvt31eIRCKEBylQ0diKPYV1mDno3GUX5B1SI4NwcVo0fj1Yjvc2H8er1w8TOhIRUacqKqzbospUaoglgn9E83vjxo2DTCZDcXEx8vPzBd/2l4j8h0fcARYsWIAFCxa0+72NGzd2+t6VK1c6P1A32EbSjWcU6ZtyKnDvZ1kYmRyKb++b4L4sYhEemN73vMe1GkzcnqoTJXVaTHrlD4hFIux8agbCArlu31vdMyUVhTVaTB8YJXQUIqLzshXpikA+SBeKxWxGfn6+/c+jRo1CRkYGNm3axCKdiNzGI4p0byaVnJrufkaRrjOaIRIBKg/cystoMmPo878hMkiBHxdM5LTudsSFBGBgrAYKqRiVjToW6V5sRFIofn5gEqcoEpFXsBXpchbpgmmuKcNzqwsRFl+HpqoSDBkyBBkZGdi8ebN9KSYRkauxSHeQWHTuPumz0+Nx5bA4GEzubzxW32LAO5vycKy8Ef+ZO+qc4qSwpgV6oxk1zXqEsrN7h765dwL3S/cRIpEIFosF2/Kq0S9ajUg1H0wRkWc6XaQHC5zEv6nCYqCOTgIAjI5V47333sOmTZsETkVE/sRzF3t7Ccmp3+CZI+mAtTCQS93/61XIxPhwaz7WH6nAieqWc76fd2r7td6Rgfb19HSuALkEja0GfJN5EqX1WqHjkIOe/v4AbvnPDvxny3GhoxARncNkMiEnJweHDh0CwJF0T2ExmxEWFgaxWIz8/HycOHFC6EhE5CdYpDtIcqqp3Zlr0t/64xiG//03vPrrEbfnUcokGJZofQLf3lZsFw6IwuZHp+Gf1w11dzSvc//nWXjk671YvadY6CjkoAsHWNekf7a9AHUteoHTEBG1lZeXh7uWr8GaXTkAAIkiUOBEBFinvr/62zGoY1IAAN9++62wgYjIb7BId9CpJeltprvXaw2obTEIMt0dAEanWLdi29FOkS4Ri5AUrsKgOE6lO59ZQ2LROzIQ4VyT7vUuHBCFtFgNRiSHol5rEDoOEdE5giLiYDZa//vEkXTPoQqLQXTaGADArl27BE5DRP6Ca9IdZNuL/Mzp7vdP7YO/jEqEWikTJNPoXmHAxjzsOnFukf7bwTKEBsoxJD6YHd7P4/pRibhhdCKbjvkAkUiEr+4djyA3bolIRNRdrY21AAC5ikW6J4nqm46c379kkU5EbsORdAe1N909NFCOvtFqxAQrBck0MjkUYpG1SVxJ3en11BaLBX/7ei+uX5GBgnbWq1NbErEIRrMF6w6V49vMk0LHIQfZCnST2YLciiaB0xARnUt3qkiXcSTdo0T0TQcAHD9+HOXl5cKGISK/wCLdQbYt2ExnFOkv/XwYf3k3AxuOVAiSSaOUYUhCCAAgI6/a/nplkw6NrUaIRUBKhEqQbN5mc04l7vpkN5b8chgGk1noOOSggupmTH9tI254NwNavUnoOEREbZweSVcLnITOpAjU2Lu9b9myReA0ROQPWKQ7SHaqSD+zgDtc2oCd+TWo0wrXoGpCajj+n737jo+iTh84/pnt6b0CSQiE0FtooQgqCnYUGxasWA4rnqf4OwWPu8N+copi10NQUAQbRUA6SA8dEkJCKCkkIb3vzu+PJQuRhJZNZpM879drITv7ndlnZnZ39tlvA1iXnO1YVl17GOHvjtkgTd0vxGUdgugY6sXNvVpRWilJXVMX7uuGVVXJKa7g281pWocjhBAO1soKqsrsrdykubvr8Y/qBCBTsQkhGoUk6fVkPDUH25lJ+jPDOzD9rt6OAdy0cFXnEB4YFMUtvVo7llVPv9YuyFOrsJoco17HoqeH8H/XdcZbozEGhPMY9ToeG9oOgI9WHaK8Sn54EUK4horifAAUvQG92U3jaMSf+UdKki6EaDySpNeTQVedpJ9u7h4X6cd13cNo7addk/LeEX5MuqELg2MCHcuST9WktwuWJP1iKIrCltRcJv6wk5yicq3DEfV0a1xrQr0tZBSUMWfzEa3DEUIIAMqLCwAwuXnKgKUuyD+qIwC7du0iOzv7PKWFEKJ+JEmvJ5PBfiGtOqMm/V+/7uXlBbs5etL1BmfzshhoLzXpF23yz3v4ZtMRftpxXOtQRD2ZDXrGX9EegOkrDlIm3RiEEC6goshek250l2u0KzJ7+hITEwPAypUrtQ1GCNHsSZJeT9U16RVn1KTP336MmX8cprCsSquwADieV8oHKw/y/u9JAEy+sQs7J13NLb1baRpXU3TvgEhujWtN7wg/rUMRTnB7n9a08XdjSEyQDCAnhHAJ1TXpRjdJ0l3VgAEDAPj99981jkQI0dzJpMH1VD26+5k16X8Z1p680kpCvLWZgq3a8bxS3lh8AH8PE38Z1h6dTkFRFEfM4sLd0TeCO/pGaB2GcBKzQc/SZ4diMcoAikII11Bdky4ju7sm1WYjOjoagEWLFmG1WtHr5RoihGgYkqTXk6mWgeMeHNxWq3Bq6NHGF3eTntziCpbty2R10gm6t/bl9j5ttA6tSTqSW8KsjWl4WQyMv7y91uGIeqpO0IvLq0jKKqJnG19tAxJCtGjlxdLc3ZUV52bwawGgKKSmprJu3Touu+wyrcMSQjRT0ty9ngz6mgPHlVdZ+WhVMjP/OFxj7nQtGPU6+rW1jzD/6850vv4jje+3HtU0pqYsMbOQGauS+XxtisyZ3kwcyChkyBsrePirzZRUaNs9RQjRslU4Bo6TmnRX5R3WFv9I+wByf/zxh8bRCCGaM0nS6+nP86QXlFYxddF+Xl6wG1doVF49X/qOo3mATL9WH0M7BDGqZzj/urmrS5xbUX/RQR54mg1kF1Uwc8NhrcMRQrRg1VOwSZ901xYcGwdIki6EaFiSpNdT9TzpVadqzfU6hVt6t+LGHuHodNqncgPb2adgyygo4+7+EVx2xpRs4uIY9DrevbMXI7uGOVpQiKbNqNfx1JUxuJv0aNzwRQjRwjkGjpPm7i4tpOPpJF1V5cIhhGgY0ie9nqqT9Moqe026v4eJd27vqWFENXUK88bX3UheSSU392pFnyh/rUNq0lRV5bO1KczdcoSvHuxHmI+b1iGJehrVM5zLY4MI8DRrHYoQogWrOGOedOG6Atv3QNHpSU9PZ9myZURGRtKuXTsZRE4I4VRSHVhPhlO15ZU2e5KeW1zBigNZ7DiSp2FUp+l1CoPb22vPVyWe0Diapk9RFH7bm0liZhHfbZH+/c2BQa9zJOiZBWUUlUvfdCFE47LZbKebu0tNukszmCx4h0YCMOH9uYyb/ivJyckaRyWEaG4kSa8nk+FUc/dTA8ftOZ7PA19s5oV5O7UMq4beEb4YdAq/78/SOpRmYfzl7fn3zd1cZhR/4RyfrjnEZW+s4OPVh7QORQjRwuTn56Oe+rFf+qS7Pt82MQDkH0vBMzBc42iEEM2RJOn1VF2TXmVTUVUVs0FP11bexIS4zuisoT5uVNlU6UftJEM7BHFX/wg8zQbKq6xahyOcpJWvG+VVNj5dc4gTheVahyOEaEFyc3MB+xzpOr30RHR11Ul6VuJWx48rQgjhTJK11ZPRcPoQVlpV+rX155cnh/DemF4aRlXTwawiANrLyO5Os/NoHrfP2MATs7drHYpwkpFdQ+nR2oeSCivTVxzUOhwhmpTp06cTFRWFxWKhf//+bNq06Zzlv/vuOzp27IjFYqFbt24sXLiwzrKPPfYYiqLw7rvvOjlq15GTkwOA2ctP40jEhfAKiUBnNFFemEfhCen6JoRwPknS68moOzNJt5FfWsnxvFKX6teadCpJLyqv5PO1KRpH0zy4m/RsSs1lVeIJ8ksqtQ5HOIGiKLww0j7/7ayNh0nLKdE4IiGahjlz5jBhwgQmTZrEtm3b6NGjByNGjCArq/YuVuvXr2fMmDE89NBDbN++nVGjRjFq1Ch27959Vtn58+fzxx9/EB7evJsUVyfpFknSmwSd3oBv6w4A5Bw6+3UrhBD1JUl6PVXPkw72fulzNx9h4Gu/88oC1/nQTsosBGDJnkw+WHkQm8w1VW/tg714Y3R3Vj9/OT7uRq3DEU4ysH0gQ2ICqbSq/GdZotbhCNEkvPPOO4wbN44HHniAzp07M2PGDNzd3fn8889rLT9t2jRGjhzJ888/T6dOnZgyZQq9e/fm/fffr1Hu2LFjPPnkk8yaNQujsXl/zjpq0r0lSW8q/KI6A5CT7Drf94QQzYck6fWkP2Mu9AqrjSqbikmvw83kGlNxWG0qh7KLAXvtb3ZRBXvTCzSOqnm4vW8bQn0snCgsxyo/fDQbfxvRkSAvM70j5cuyEOdTUVHB1q1bGT58uGOZTqdj+PDhbNiwodZ1NmzYUKM8wIgRI2qUt9ls3HvvvTz//PN06dLlgmIpLy+noKCgxq2pkObuTY9/lP11mZO6l4qKCo2jEUI0N5Kk15OiKI7a9CqbjceHtSPxX9cw5aauGkd22jfj+vPaLd0Y2C4AkKnYnGniDzuJn7qc1UlyTJuLbq19WPfCFdw7IFLrUIRwednZ2VitVkJCQmosDwkJISMjo9Z1MjIyzlv+9ddfx2Aw8NRTT11wLFOnTsXHx8dxa9OmzUXsibZON3f31zgScaE8Q9pg9vLDWlFGQkKC1uEIIZoZSdKdwHhq1PTKqtO1qbozati1pNcpxEX6c2e/CIbFBgOw6oAklM5iMeqpsqlsSsnVOhThRNVTK+5LL2Dv8aZTGydEc7B161amTZvGl19+iaJc+LV04sSJ5OfnO25HjhxpwCidq3p0d4s0d28yFEVHaKe+AKxdu1bjaIQQzY0k6U5QPQ1bpc3GX7/bQddJS5i5IVXboE45nFPM4ZxirDaVoR2CANiadpL8UhnszBkeHhLNr08Ndgw4JpqP77Yc4dr/ruGVH3ejqtKdQYjaBAYGotfryczMrLE8MzOT0NDQWtcJDQ09Z/k1a9aQlZVFREQEBoMBg8HA4cOHee6554iKiqozFrPZjLe3d41bUyHN3Zum0C79AUnShRDOJ0m6E1TXulVabRSWVdpHdr+IX/8b0rRlSQx9cyUfrjxIG3932gV5YLWprJYm707RyteNLuE+lFRUsS3tpNbhCCe6rEMQZoOOLYdP8tvezPOvIEQLZDKZiIuLY/ny5Y5lNpuN5cuXEx8fX+s68fHxNcoDLF261FH+3nvvZefOnSQkJDhu4eHhPP/88yxZsqThdkZDjpp0SdKblJBO/QDYu3cvJ07I9yohhPMYtA6gOTCcmoatyqry2i3defGaSvxcZMTv6unX2gd7ATC8cwjJqw6xfF8mN/Ro3lPaNJakzEJu+XA9OkXhj4lXusyggaJ+QrwtPDw4msV7MvC2uMb7WQhXNGHCBO677z769OlDv379ePfddykuLuaBBx4AYOzYsbRq1YqpU6cC8PTTTzN06FDefvttrrvuOr799lu2bNnCxx9/DEBAQAABAQE1nsNoNBIaGkpsbGzj7lwjyc7OBuw16VU56RpHIy6Um08AXiGRFGYeZubMmVx//fW0a9cOvV6+Bwgh6keSdCcwGuy15hVWG34eJvw8TBpHZKeqKpVWG4oC7YM9ARjRJZTkrCIu7xiscXTNR3SQJz5uRgw6hSMnS+gQ4qV1SMJJnriiPc8Mj8Ggl0ZHQtTljjvu4MSJE7zyyitkZGTQs2dPFi9e7BgcLi0tDZ3u9Hto4MCBzJ49m7///e+89NJLxMTEsGDBArp2dZ0BVxtTWVkZRUX2H9Qt3v4US5LepPi0iqYw8zDvzPyRHw8rfDL+Ojp06KB1WEKIJk6SdCcwnlGTPn7WNtLzS3n1xq50a+2jaVyKorD4mcsorbBiPtUkv3eEH5/e11fTuJobvU7h20cGEO7j5jIDBgrnsBjttSGqqrLywAl6Rfji6+4aP8IJ4UqeeOIJnnjiiVofW7ly5VnLbrvtNm677bYL3n5qauolRub6qptJK3o9RjdPjaMRF8svMpaj21aQk7KX7jc/rnU4QohmQqqHnMAxurvVxu7j+WxLy6O8yqpxVKe5mfSSPDaw1n7uqMCyvZkyGngz9OrPe3ngy838d/lBrUMRQjQzWVlZAJg9fC5qNHvhGnzC2qIzmCjLz6Ywq+nMKCCEcG2SpDtB9cBxFVU2Xh/dnRn3xDmal2vp9/2ZvLsska2Haw5oVlZp5ecdx3n15z0yarUTvbF4Pw//bwvTV0oi19wM72Rvtvu/DamkZBdrHI0QojmpTtJNHk1nNHpxms5gxC/CPsNLdtIOjaMRQjQXkqQ7gcVoP4xllVYGRAcwsmuoSzSJXbI7k3eXJZ01krvVpvLc3B18sS6V5BNFGkXX/NzUsxW+7kYi/d3lx49mZnBMIJfHBlFlU3lt0T6twxFCNCOnk3Rtu8iJS+fftgsA2ck7NY5ECNFcSJLuBNX9VssqrTz97XZenLfTPg2bxpKyCgGICalZq+9hNjCwvX3k3KV7sxo9ruaqc7g3G1+6kr+N7ChNFpuhl67thF6nsGRPJn8cytE6HCFEM1E9Z7xZatKbLP/obgDkHt5PaWmpxtEIIZoDSdKdoHpQtsKyKn5MOM63m4+gdYqmquoZ06+d3fT+ylPNd5ftk/mfncls0LP7WD4Tf9hJaYXrjEsg6i8mxIu7+kUA8K9f90lrCSGEUzhq0j2lJr2pcg8Iw80vGFtVJZs3b9Y6HCFEMyBJuhOYT9WkV1htvHx9Z567qgNuRm3nyMwqLKewrAqdAm0DPc56fHgn+xRs29JOkl1U3tjhNVs2m8rjs7byzaYjzNt2VOtwhJM9MzyGKzoG86+bu0prCSGEU5w5cJxomhRFIaxLfwBWr16tcTRCiOZAknQnqK5Jt9pUHhrclievjNF8NPWkTHstelSAB2bD2T8YhPm40bWVN6oKS/dKbbqz6HQKj1zWjpt6hhMX6ad1OMLJAjzNfH5/X7q39tU6FCFEMyEDxzUPYd0GAvYpB6WllRCiviRJd4LqPuk5RRVMX3GQbzelaRwRuJv1XNM1lMs6BNVZ5pquYQAs3JXeWGG1CPcOiGTanb3oFCZfuJorm01lzuY0/rM0UetQhBBNnCTpzUNIx77o9AaOHDnCgQMHtA5HCNHESZLuBNU16dlF5by55AAfrEzWOCLoHeHHh/fEMfnGLnWWubabPUlfn5zDyeKKxgqtRThZXGGfku2rLVqHIhrA9iMneWHeLt77PYl96QVahyOEaMIcA8dJn/QmzWhxxz+qMwC//vqrxtEIIZo6SdKdoLomXQFu79OakV1DtQ3oArUN9OCW3q14YWSs5s3zm5sKq41P1hxi2b5Mdh7N0zoc4WRxkf5c2y0UmwqvLdqvdThCiCZKVVWZgq0ZCY7tBcAvv/yicSRCiKbOoHUAzUF1TbrFpOdfN3fTOBq7UdPXEeRl5l+juhLsbamz3Du392y8oFqQEG8Lz10dS9tAD7qEyxev5uj/ruuMxaDn+ZGxWocihGii8vLyqKqyT9kqzd2bvqAOvWDhV6xdu5a8vDx8fX21DkkI0URJTboTnNknfeneTHYfy9c0npyichKO5LFsXyZeFqOmsbRkjw1tx4guoShASUWV1uEIJ2vl68Y7d/QkzMdN61CEEE1UdS26l5cXeoNcr5s6D/9QoqOjqaqq4rffftM6HCFEEyZJuhNYTtWkH8srZdz/tvDusiRN4zl4an70Vr5uuJnOPxXctrST/N/8XSySAeScbsWBLIa/s4o3FssgMs1VaYWVd5Ym8o4MIieEuEjVSXpAQIDGkQhnGTZsGCD90oUQ9SNJuhOYz5gTvWcbX9oFnz0veWOKDfVixj1xPD/iwprhrk48wayNaXy/Veb1djajTseh7GKW7MmgosqmdTiiAfyRksN/lyfxwYqDJGYWah2OEKIJqU7S/f39NY5EOMvQoUMBWLRoEVarVeNohBBNlSTpTmAx2g+jr7uRBeMHMfGaTprG4+tuYmTXUG7q2eqCyl93apT3NUnZFJRVNmRoLc6g9gG8eWt3lk4Yiskgb7fm6PLYYIZ3CqbKpvJ/83dhs8n8uEKIC1M9srvUpDcfcXFxeHt7c+LECTZv3qx1OEKIJkqyBicwG+w16UVlVaTllGie6CZlFlJUfuF9oGNCvGgf7EmF1cZvezIbMLKWR1EUbuvTBk+zgV1H88kvlR9BmqNXb+qKu0nP5tSTzN1yROtwhBBNhDR3b15Um42jR48ycOBAAH7++WeNIxJCNFWSpDtBdU36kZMlXPbmCj5Yod086aqqcuuMDXSdtOSimt7e0D0cgB8TjjVUaC3a5J/2cMP7a/lqfarWoYgG0MrXjQlXdQDg3wv3caKwXOOIhBCuzmq1kphoH8tCr9ejSiOcJq84N4PJ8xM47tYWgPnz52sckRCiqZIk3Qmqa9KtNhV3kx6PCxisraFkFZaTX1qJXqcQ4e9+weuN6mVP0tcdzCarsKyhwmuxekX4otcp5BZXaB2KaCD3D4yiS7g3ep3CoRNFWocjhHBxycnJLN20B4A1SVmUl8m1tzlw9w+l7cDrQFHYt28faWlpWockhGiCZJ50J6geQd3LYmT73y7XNJYDGfba86gAd8fUcBciMsCDXhG+bE/L4+cd6Tw0uG1DhdgiXd89nF5t/IgIuPAfTkTTYtDreG9ML3zdTfh7mLQORwjRBFgr7a1uPPzDNI5EOJPF2x+/Nh04mXaAH3/8kSeffFLrkIQQTYzUpDuBh8n+W0eRCwy6Vt3EPTbU66LXvbmXfaA5afLufHqdQkSAO1mFZbyzNJGyShnxtTmKDvJ0JOi7j+XLeRZCnFN5cT4ARo+Lv2YL1xbSqR8gTd6FEJdGknQn8DDba6xPllYS+/dFmia51TXpHUIu/oJ/XbcwHr0smtdu6e7ssAT28QLu/PgP/rs8ie9kcLFm7f3fk7jx/bW893uS1qEIIVxYRZE9STe5S5Le3IR26gPA6tWrycnJ0TgaIURTI0m6E1TXpKsqlFfZMOi0O6yHc0oAiL2EJD3A08zEazvROdzb2WEJ7CO93xcfRY82vsRcwvkRTUf7YC9sKsxYdYjdx/K1DkcI4YLKysqoKi8FJElvjtz9Q4iNjcVqtfLLL79oHY4QoomRPulO4GE+fRgXPT3kogZsc7ZvHxnAsbxSfN2N9dqOemqYWUVRnBGWOOWeAZGMjY+U49rMjewayrXdQtmfXohNhmwWQtQiOzsbAL3RhN5k0Tga0RCGDx/OgQMHWLBgAffdd5/W4QghmhCpSXcCk0GHSW8/lL7uxhpJe2PT6RTa+LvjZbn0JP2jVclc/tZKtqXlOS8wAdj7plttKnM2p3HzB+sorZA+y83V1Ju7s/DpIXRv7at1KEIIF1SdpJu9/eWH22bqqquuAmDJkiWUlJRoHI0QoimRJN1J3E/1S7/v800czLrw+cmdaV96AbM2HmbP8fo1rz2QUUhqTgnfbz3qpMjEmWwqvPf7Qban5fHtZpmapbnycTc6ZlhYtCudfekFGkckhHAl1Um6xTtA40hEQ+nYsSORkZGUlpby22+/aR2OEKIJkSTdSar7pSdmFmHTqHXr7/uz+L/5u/l0TUq9tnNbnzYA/LzjOCUVVc4ITZzBZNDx4jUd+ft1nRjTL0LrcEQD+3TNIR6ftY3nv99BpdWmdThCCBdxOkn30zgS0VAUReHmm28GZJR3IcTFkSTdSapHeH/+6g608nXTJIb99RjZ/UwDov2JDHCnqLyKhbsynBGa+JPru4fz8JBoLEY9WQVlWocjGtCNPcPxcTOy+1gBH68+pHU4QggXITXpzZtqs5GSkkKfPvZR3n/++WeqqqTiQwhxYSRJd5LqfugxIV6a9UnvEOxJXKQfXVvVb3R2RVG4/VRt+tzNMlVYQ8kpKueeTzdy1X9WU1BWqXU4ooEEe1mYfGNnAKYtSyIxU5vuMEII13I6SffXOBLREIpzM5g8P4FZB3UYLR6cPHmS1atXax2WEKKJkCTdSdwM9pr0T9YcorxKm8HAnrwyhnmPD2RITFC9tzW6d2t0CmxKzeXQiSInRCf+zNfdREZBGSUVVWw9fFLrcEQDGtWzFVd2DKbCamPC3AQqqqTZuxAtnSTpzZ+7fyjeYVGEdO4LwLx58zSOSAjRVEiS7iRmo/1Qbk49qek86c4S6mNhWGwwAHO3yAByDUGvU3jj1u4snzCMy08da9E8KYrCv2/phq+7kX3phWxJzdU6JCGExiRJbznCusQD8P3330uTdyHEBWn62aSL8DrVxP2KjkHodY0/lcrSvZncNmM9H69Odto2q5u8rzuY7bRtipp6R/gREeBOen4p82Q0/WYtxNvCu3f0ZN7jAxnYPlDrcIQQGpM+6S1HQHQXfH19ycrKkibvQogLIkm6k/i4mwDo2spXk+ffeTSPzaknOXSi2GnbvLJTMF880JcF4wc5bZvibOn5pVz+1kqe/36HZtP3icYxLDaYnm18AcjIL6NQxiIQosXKyckBpCa9JdDpDY450+fOnatxNEKIpkCSdCepnnVtq0bNWKsHo6rvyO5nMup1XB4brEnLgJYkzMeNy2KCiIv0Q2boahl+35/JiHdXM/mnvVqHIoTQQFFRESUlJYAk6S3FtddeC9j7pUuTdyHE+UiS7iSVpwaL23ksX5PnT8y0D+4WG+q8JP1Mh04UkZEvU4U1lP/c0ZO5j8Y32PkTrsXLYqSwrJJ5246ycFe61uEIIRpZZmYmAHqjGaPFXeNoRGPo168fgYGBZGdns2LFCq3DEUK4OEnSnSTY2wJAiJe50Z+7pKKK1Bx7M3dn1qRXe+e3A1zx9io+WSNzPDcUD7OBKpvKzA2pPPzVZlRVPf9KosnqG+XP48Pa4W7Sy0jvQrRAGRkZAJg9fTSORDQWg8HA6NGjAWnyLoQ4P0nSnaR9sCdwOllvTPszClFVCPQ0E9QAPxL0ivAD4LstRyit0GZ6uZbgZEkFUxftZ9m+LJbty9I6HNHAnr6yA0ueuYxRvVppHYoQopFV16SbJElvUW6//XYAfvjhByorZUwSIUTdJEl3kuq50dPzGr9JeGtfN6aM6spfhrVrkO0P7RBEhL87BWVV/JhwrEGeQ0Cwl4UJV3XgHzd14fLY+s91L1ybyaCjjb+9mev+jAJm/nFY44iEEI3ldE26r7aBiEah2mykpKQQFhZGQEAAubm5/P7771qHJYRwYZKkO0nKCfsAMOn5pY3+3MHeFu4dEMmDg9s2yPZ1OoV7BkQA8L8Nh6UpdgN6eEg0Y+Oj0OsUkjJlpPeWIC2nhJveX8crP+5mvUx3KESLUF2TLs3dW4bi3Awmz0/gr9/vxBTeEZAm70KIc5Mk3UlCfezN3K0aJLBZBWXYbA37vLf3aYPZoGNvegHb0k426HO1dAVlldzx8R9c/95ajp4s0Toc0cAiAtwZ1bMVqgpPz0ngRGG51iEJIRqY1KS3PO7+oXiFRBDR50rAPsp7WZkMyCuEqJ0k6U5yY49wACqtKpWNOI+WzaZyxdur6P7qb6TlNFxC5+tucuzj52tTG+x5BHiZDegUUBTYeVSb2QJE45p8Yxc6hHhyorCcCXMTGvxHNyGEtqRPesvlH9mR0NBQ8vPz+fXXX7UORwjholwiSZ8+fTpRUVFYLBb69+/Ppk2b6iz7ySefMGTIEPz8/PDz82P48OHnLN9YSitPD6iWX9p4g4EcPVlKUXkVFVU2wnwbdtC66ub0i3ancyRXangbiqIovHZLd5Y/N4xru4VpHY5oBG4mPdPv6o3FqGNNUjYfrkrWOiQhRAOSmvSWS9HpuOGGGwCYOXOmxtEIIVyV5kn6nDlzmDBhApMmTWLbtm306NGDESNGkJVV++jWK1euZMyYMaxYsYINGzbQpk0brr76ao4d03ZAszOnJ8srabwk/VC2fX709sGeGPUNezo7hXlzRcdgRvWU0agbWlSgB6183TiSW8KUX/ZS1YitM4Q2YkK8+MdNXQHYe7xAxn4QohlzJOkeUpPe0qg2G3FxcQAsXLiwzu+7QoiWzaB1AO+88w7jxo3jgQceAGDGjBn8+uuvfP7557z44otnlZ81a1aN+59++inz5s1j+fLljB07tlFiro1Jr0NRQFUbtyZ9WGwwuyZfTU5RRaM836dj+6DTKY3yXC1dpdXGbTM2kFFQRpiPhYeHRGsdkmhgt8W1JtTbwpCYQBRF3mdCNEeqqp4eOM7LV9tgRKMrzs3gy/QKvEOjKMhI5YMPPmDy5MlahyWEcDGa1qRXVFSwdetWhg8f7lim0+kYPnw4GzZsuKBtlJSUUFlZib+/f62Pl5eXU1BQUOPWECZe24mu4fZfxPNLGydhruZlMRIV6NEozyUJeuMx6nU8PTyGAdH+XN4xWOtwRCNQFIXLOgShKArlVVY+WHnQMb2jEKLps1qtbNu2zTFgmMldatJbInf/UKIH25u8//TTTxpHI4RwRZom6dnZ2VitVkJCQmosDwkJcTQFO58XXniB8PDwGon+maZOnYqPj4/j1qZNm3rHXZsqqw0fN3vDhJPFjVeT/vnaFH7bk0FZZeN9ka+02pizOY07P94gCUQDu6NPG74ZN4B2QZ6cLG7cH3+Eth6buZU3Fh9g8k97tQ5FCOEkycnJPDbtewB0RhNVMkhkixXR7ypQFLZv305ysoxDIoSoSfM+6fXx2muv8e233zJ//nwsltoHTZs4cSL5+fmO25EjRxoklge+3My6gzkA5BQ3zhRKhWWV/OOXvTwyc2ujJukA/1maxB+HclmwXduxAJo7nU5BURS+/uMwQ95YwZI9F/bjlWj67h/UFkWBbzalsWhXutbhCCGcxGA0A9IfvaVz8wkkMNo+Dsm0adNITEzEapWKDyGEnaZJemBgIHq93tE3q1pmZiahoaHnXPett97itdde47fffqN79+51ljObzXh7e9e4NYSySivVv4c31jzHBzIKAQjzseDrbmqU5wR7M+wHB0cBMGPVIRnUrBEcz7OP4i8/irQcQzsE8derY7mrfwRXdJLuDkI0F+VF9qk1je6eGkcitBYQ3Q2Az2Z9x8Pv/yI16kIIB02TdJPJRFxcHMuXL3css9lsLF++nPj4+DrXe+ONN5gyZQqLFy+mT58+jRHqeX1+f1+evKId0HhJ+r50e//6jqFejfJ8Z7q7fyR+7kZSsov5ZafU8jW0J6+I4Y1bu/P+Xb21DkU0or8Ma8e/b+6G2aDHZlMbdVBKIUTDKC/KA8Dk3jCVBqLpCGzXDZ3RREluBlWlRVqHI4RwIZo3d58wYQKffPIJX331Ffv27ePxxx+nuLjYMdr72LFjmThxoqP866+/zssvv8znn39OVFQUGRkZZGRkUFSk7Yebl8VIdJD9V/ETRY2TpO9Nt9ekdwpr/Au9h9nAQ6fmTX/v9ySs0q+uQbmZ9Nzepw06BWZvTCPhSJ7WIYlGUD3Ce2mFlSe+2cbYzzY2etcWIYRzVdekm6QmvcXTm8wEx/YF4Mi2ldoGI4RwKZon6XfccQdvvfUWr7zyCj179iQhIYHFixc7BpNLS0sjPf10Te2HH35IRUUFt956K2FhYY7bW2+9pdUuAHD7Rxv4z9IkoPFr0rVI0gHGDozC22Ig+UQxi3ZLbXpjmLHqEC/N38Vfv9shyVoLcqKwnPXJOew4ms9z3+3AJj+KCdFkVdekG90bvxWccD1hPS4DIH33es0rnIQQrkPzJB3giSee4PDhw5SXl7Nx40b69+/veGzlypV8+eWXjvupqamoqnrWTes5JpMyC0nLLQEgu5HmLI8KcKeNv5tmSbq3xciD1bXpyw9K4tAI7uzbhjb+btzZtw1GvUu8fUUjiAhwZ8Y9cRj1Cr/uTOfd5UlahySEuETlhScBMHlIc3cBvm064BncBmtFOYsWLdI6HCGEi5Bv+U7y6X19+eBue3/h3OIKKhthMLV37+zFmr9dQftg7ZrMPTCwLV5mAznFFRw5WaJZHC2Fn4eJ5ROG8fCQaHQKZDdS1wqhvQHRAfxrlH2Qof8uT+LHBBlEUIimqLwwD5DR3YWdoihED7oegO+//17jaIQQrkKSdCeJi/RjZJdQDDp7H9KcRqpN15qPu5EvH+zH2hcuJzLAQ+twWgSTQUdWQRn3fbGZOz7aIM3eW5Db+7bh0cuiAXj1570Ul1dpHJEQ4mKVSU26+JOo+GtRdDoSEhLYs2eP1uEIIVyAJOlOUFph5ZH/beHZuQkEeNinQmvofukfrkzmL7O2sjrxRIM+z4WIi/TDYtRrHUaLYtTr2Hu8gKMnS9khg8i1KH8b2ZF7BkQw6+H+eJgNWocjhLgIlZWVVJTYx5ORJF1Uc/MJILiDvTXmZ599pnE0QghXIEm6ExRXVPHb3kx+TDhOkJcZgKzCsgZ9zpUHsli4K4OMgoZ9nouRWVDG64v3U14lNbsNzc/DxHtjerHw6SH0jw7QOhzRiPQ6hX+O6uYYi2LHkbxGG6xSCFE/OTk5oKooOj1GN2l9Jk5rHXc5ADNnzqS8XD7ThWjpJEl3AneTnn/d3JVJN3Qm1McNgPT8hkuebTaVvcftv8R3a+UafdpsNpU7PtrAhyuT+WZjmtbhtAjx7QJoF+RJen4pz85JIL9E5tBuadYkneDOj//gwS83UyRN34VweVlZWQBYfAJQFPkKJk4Lat+ToKAgsrOz+emnn7QORwihMblCOIG7ycDd/SN5YFBbWvvZk/SjJ0sb7Plsqsqbt/XgySvaazpo3Jl0OoVxp/rKvvf7QUkYGomqqjz+9Tbmbz/Gq79IP7aWprWfO24mPbuO5fP0N9u1DkcIcR7VSbqbj7SAEjXp9HpGjx4NwEcffaRxNEIIrUmS7gTH8kp5+7cDzNyQ6kjSj+U1XJJu0OsY2TWU566OdalpuG7v04aoAHdyiiv4bE2K1uG0CIqiMPnGLvSK8OWJy9trHY5oZG0DPfji/r4Ee5kd0yEKIVzXiRP2cWTcfAI1jkS4GtVmIz4+Hp1Ox/Lly2UAOSFaONfJ8JqwI7klvPf7Qb5cn3pGTXrDTUd2PK+U0grX6/dt1Ot47upYAD5anUymC/WXb856tvHlh8cHEh3kydGTJRzJlanwWpIebXxZ/bfLGdTe/qU/q6AMVVU1jkoIUZvTzd0lSRc1Fedm8OH6dAI79ALg9ddf1zgiIYSWJEl3giAvM/cPjOLGHq1o5esONGxz9799v5Mukxbz847jDfYcl+r67mH0jvClpMLK64v3ax1Oi6EoCusOZnPNtDWMn71NBu9rYapnV9h1NJ+r313Nu8uSNI5ICFEbR026ryTp4mzu/qF0GnEPAPPnz6eoqEjjiIQQWpEk3QnaBXky+cYuPD08xlGTfqKwvEHmr1ZVld3H87Gp9qaurkZRFCbd0AWAH7YdY3vaSY0jajnaBnqg1ykYdApFZTImQEuUcOQkeSWVTFuexEerkrUORwjxJ2cOHCdEbUI69sU9IJSioiK+/vprrcMRQmhEknQnSMku5seEY2xLO4mvuxEPk71W63gD9Es/erKUvJJKjHqFmBDXGDTuz3q08eXWuNYALNuXqXE0LUe4rxtzHonn20fiCfA0u2SXCNGw7o2P4vkR9i4nUxft538bUrUNSAhRg/RJF+ej6HRE9r0agOnTp0v3JSFaKEnSnWDtwWye/jaBj1cdQlEUWp2qTT/SAE3e9xzPByA21AuzQe/07TvL30bEMvOhfjw/oqPWobQosaFemAw6Fmw/xpA3ficps1DrkEQjG395e8Zf3g6AV37cw9wtRzSOSAhRTUZ3FxeiVY8hmM1mdu/ezezZs7Fa5Ud3IVoaSdKdIMjTxIBof2JDvQCICrA3Q0/NLnb6c+06Zk/Su4a7xvzodQn2tjAkJkjrMFokm03l+61HyS6q4Mv1qVqHIzTw16tjeWBQFAC/7cmQmhghXEBVVRU5OTkAuPnK9VHUraK0EJ/oHgA8++pbJCdL9yUhWhqD1gE0ByO7hjGya5jjfrtgT9ibSfIJ5w/4cTDLvs0urVw7ST/TygNZ7Dqaz5NXxmgdSoug0ym8e2dPvttylEdOzV0vWhZFUXjl+s50CPFidO/WKIqidUhCtHiZmZmoqoqi02H29NU6HOHiogbeQNa+TWQn7+T48eN06NBB65CEEI1IknQnSM8vJb+0kiBPMwGeZtoF2fuKN0SS/uHdcaTmFOPrbnL6thtCYmYh93+xGUWBQTGB9I7w0zqkFiHQ08zjw+xNnmduSKWgrIrxMo96i6IoCmP6RQD21hUv/7ib7q19uKNvhMaRCdEypaenA2D29EXRSUNGcW6ewW0Ijo0j68BWZs6cybBhw7QOSQjRiOQq4QSfrklh5Ltr+GRNCgDtguzN3ZOznN/cXadTiA7yxN+jaSTp1TV5qgov/bCLSqtN65BalE0pubz84x7eXHKAhCN5WocjNLJodwazNqbxwrxdfP3HYa3DEaJFOn7cPm2q2Ut+rBYXpuPVdwEwZ84c8vPzNY5GCNGYJEl3ArNBR4CHCW83e8OE6FM16RkFZRSVO28qrK2HTzJr4+EGqaFvSP93XSf83I3szyjks7UpWofTovRr688Dg6J48ZqO9GjddLpICOe6tlsoDw5qC8CPCceokh/LhJNNnz6dqKgoLBYL/fv3Z9OmTecs/91339GxY0csFgvdunVj4cKFjscqKyt54YUX6NatGx4eHoSHhzN27FhHkttUOWrSvXy1DUQ0GaFdBuAZ1Jri4mI++eQTrcMRQjQiSdKd4G8jO7L15av4yzB7c2IfNyNBXmYAkrOcl1D/lHCM/5u/u8nVhPl7mPi/6zoD8O6yRFIaYEA9UbdXru/MY0PtTd8/W5tCdlG5xhGJxqYoCi9f34kpN3Xh8/v7YtDrUFVVBpQTTjFnzhwmTJjApEmT2LZtGz169GDEiBGOkcz/bP369YwZM4aHHnqI7du3M2rUKEaNGsXu3bsBKCkpYdu2bbz88sts27aNH374gQMHDnDjjTc25m45XfWPDBapSRcXSFEU2g66DoBp06ZRWVmpcURCiMYiSboTVFTZsNlqftntcGoO8/0ZBU57noSj9qZOPdv4Om2bjWV071YMah9AWaWNv363A6tNkoPGUj1o2GuL9jPll708NnOrHP8WSFEU7o2PwstiBOCt3w4w5Zd9Z312CXGx3nnnHcaNG8cDDzxA586dmTFjBu7u7nz++ee1lp82bRojR47k+eefp1OnTkyZMoXevXvz/vvvA+Dj48PSpUu5/fbbiY2NZcCAAbz//vts3bqVtLS0xtw1pzrdJ12SdHHhwroOxM/Pj6NHjzJt2jSZjk2IFkKSdCd4/OutRL+0kLmbT89H3OXUFGm7jzkvSe8T6Ue3Vj70atP0LvCKovDGrT3wNBvYevgkn6w5pHVILc5tfdrg72Hi9j5t0OtktO+WbM/xfKavSObzdSlMmJsgY0WIS1ZRUcHWrVsZPny4Y5lOp2P48OFs2LCh1nU2bNhQozzAiBEj6iwPkJ+fj6Io+Pr61lmmvLycgoKCGjdX4qhJ925613ChnbKCHDzb9wVg8uvvcvDgQY0jEkI0BknSnaCsyv6rpslw+nB2CfcGYPdx5w308fL1nfn5ycFEBLg7bZuNqZWvG6/c0BkPk77JDHzXnLQP9mTV88O4vW8bKq02fkw4Js2dW6gu4T68e0dPDDqFBQnHGfe/LZRUOG/8DNFyZGdnY7VaCQkJqbE8JCSEjIyMWtfJyMi4qPJlZWW88MILjBkzBm9v7zpjmTp1Kj4+Po5bmzZtLnJvGtaZo7sLcTGiBt6I3mimOPsY69at0zocIUQjkCTdCT4d25etfx/OiC6hjmXVNen70gukafEZbotrzYq/DuP2Pq715aml8LIYsdlUHpu5lae/TeDDVclahyQ0MqpXKz65rw8Wo46VB05w96cbyZHxCoSLqays5Pbbb0dVVT788MNzlp04cSL5+fmO25EjR85ZvrEdO3YMALPUpIuLZHT3JHrITQDnfR8IIZoHSdKdwM2kJ8DTjJtJ71jWNtADd5Oeskobh5wwGvvEH3Zx+4wNrEk6Ue9taUlRFIK9LY77R0+WaBhNy6TTKQxqH4jFqCMm2EvrcISGLo8NZtbDA/BxM7LjSB57012rebBwfYGBgej1ejIzM2ssz8zMJDQ0tNZ1QkNDL6h8dYJ++PBhli5des5adACz2Yy3t3eNm6uoqKhw7LPFO0DjaERT1PHqu9HpDWzZsoVVq1ZpHY4QooFJku4Ed3/6B8PfWcXuY6ebtut1Cp3CnNfk/Y9DOWxKzW02tfKqqvLf5UkMe3MlKw/UPgKwaDgPDm7L8ueGcVXnEIrLq9iQnKN1SEIjcZF+zHt8IG/f3oMhMUEAlFXKwETiwphMJuLi4li+fLljmc1mY/ny5cTHx9e6Tnx8fI3yAEuXLq1RvjpBT0pKYtmyZQQENO3Etro/uslkwuQuP46Ki+fuF0Tr3sMA+Oc//6ltMEKIBidJuhOknCjmYFbRWQl0j9a+gH1+8/rIK6lwTFvWFEd2r42iKGQXlVNlU5kwdweZBWVah9TitPJ1o6i8irGfb2Ls5xvlx5IWrH2wJzf3ag3AsbxSrnhrJXM2N91RtEXjmjBhAp988glfffUV+/bt4/HHH6e4uJgHHngAgLFjxzJx4kRH+aeffprFixfz9ttvs3//fiZPnsyWLVt44oknAHuCfuutt7JlyxZmzZqF1WolIyODjIwMKioqNNnH+jp69Chgb0VQPeOGEBer3ZCbMBgMLFu2jD/++EPrcIQQDUiSdCf46N4+zB7Xn3bBnjWW942y9zvbklq/JH17Wh5gb0Lv6958Blx76dpOdA7zJre4gqe+2d5sWgk0JRaDjlBvC+4mA37N6LUlLt23m9I4nl/GC/N28fZvB7QORzQBd9xxB2+99RavvPIKPXv2JCEhgcWLFzsGh0tLS3MMmgYwcOBAZs+ezccff0yPHj34/vvvWbBgAV27dgXsfbd/+uknjh49Ss+ePQkLC3Pc1q9fr8k+1ofVamXz5s2AfXo5Ga9TXCo33yBuusneN33KlCkaRyOEaEgGrQNoDrq19ql1eZ8ofwAOZBaSX1KJj7vxkra/OTXXvr3I5jXYjMWo5/27enHDe2vZmJLLf5Ym8tcRsVqH1aIY9Dr+c0dPjp4sITrIk+yico6dLKVHM2mxIS7ehKs6oFMUpi1PIsK/ac4kIRrfE0884agJ/7OVK1eetey2227jtttuq7V8VFRUs5p5Ijk5mfd+WAHAsSIbQWXSckxcukcffZT58+ezcOFCtm7dSlxcnNYhCSEagNSk15Oqqjz81Wb+Mmsr+aWVNR4L8jITHeiBqsLWtNxLfo7qmvi+p5L+5iQ6yJN/39INgPdXHGTx7vTzrCGczWTQER3kSVZhGXd8tIG7P93I1sOX/noVTZuiKDx7VQd+fmIwt52aheHQiSL2HpdB5YS4VGqVfYpDD/+Q85QU4twiIyMZM2YMYO9qkpiYSGJiIlarjCUiRHMiSXo9VVpVlu3LYuGuDKjlh/8+p5q8bzx06UnP5Bu7MOmGzgyOCbzkbbiym3q24sFBbQGYMHcH+zMkGdCCl9lIsJcFT7OBYC/L+VcQzVp1C6HCskrG/W8Lt3y4jh8TjmkclRBNU1mBfXBOk2ftLe+EuBiTJk1Cr9ezevVq7nt9NuOm/0pyskypKkRzIkl6PSkKvDG6O6/e2AV3s/6sxwe1tyfWqxIvfeq0zuHePDCoLeG+bpe8DVf30rUdGdQ+gEqrjcTM+k9ZJy6em0nPFw/05bvH4mnj786hE0X1et2K5sFmg1Z+7pRV2nj62wT+8fNeKqpsWoclRJNSmm9P0s2evtoGIpqFmJgYbr31VgAOrl6AR0CYxhEJIZxNkvR6Mup13N63DfcNjMKoP/twDokJQlFgf0YhGfkX3w8tKbOQtJySZtU/rzYGvY73x/Tm20fiubFHuNbhtFgWo542/u6k55dy1ycbefirzayWRL1F83E38sX9ffnLsHYAfL4uhdtmrCctp0TjyIRoOsoK7K3pJEkXzjJ+/Hh0BiPZB3dwIilB63CEEE4mSXo95RZXMHXRPqavOFjr4/4eJse0aZcyxdXriw9w2ZsrmPnH4fqE2ST4eZiIO2NwvH3pBc3+xwlXFeBhJi7Sj6gAD7qEe2sdjtCYXqfwt5Ed+fjeOHzcjOw4ms+7yxK1DkuIJqGyspLyojwAzNLcXThJSEgIkf1HAHBg2bfYbNLCSYjmRJL0esouKuejVYf4dM2hOssM6xAMwMoDF1cjabOpjgG8urVqWRf2eVuPcsN7a3lnqSQCWjAZdEy7sydzHo0nwNPMltRc3lueJD+atHBXdwll4dNDuL57GJNu6AJAeZWVskoZsEiIumRnZ4Oqouj0GN09z7+CEBeo3ZCbMFo8KMw4zKJFi7QORwjhRJKk15OPm5GHB7flzn4RdZa5vGMQAGuSTlzUl9mc4gr8PEy4GfV0CW9ZSXql1UaVTeW93w8ye2Oa1uG0SAa9Dn8PE7nFFTz8vy28vTSRr+VctHitfN14/67ejiklX1u0nxvfX8vuY/kaRyaEa8rIyADAzS8IRZGvXcJ5TO5exF59FwDvvPMOZTK9nxDNhlwt6inE28Lfr+/MCyM71lmmWysfWvm6UVxhZcX+C2/yHuRl5vfnhrHx/67EZGhZp+rOfhE8dWUMAC//uJslezI0jqjl8vcw8dzVsfSJ9OPW3q0BqLJKszoBeSUV/LwjncTMIkZNX8e6g9lahySEy6lO0t39ZPo14Xyxw+/E7OXH0aNHmTZtmtbhCCGcpGVlfg3geF4pP2w7ytqkur+cKorCDacGQ/t55/GLfg5vi/GS42vKnh0ew21xrbHaVJ6cvf2S+vQL57h3QCRzHo3HzaTntz0Z3PD+Oo7kysBhLZ2vu4klzwxhZJdQ2gV51hhTQghhl5mZCYC7X5DGkYjmyGB2o+NV9nnT//Wvfzl+FBJCNG2SpNfTrmP5TJi7g7eXHjhnuRt62KfHWL4vi6LyqvNuV1VVxs/axvQVByksq3RKrE2NoihMvaUb13ULo8Jq49GZW1kvNXWa0esUqqw2pi7az770Ar7e2PwHMxTnF+Bp5sN7ejP30XgsRj2qqvLsnAS+WJeC1SZjGAjhaO7uG6xxJKK5Cu8+mG7dulFYWMjLL7+sdThCCCeQJL2e/NxNDIkJdIzgXpfOYd5EB3lQXmXj1wuoTU8+UcSvu9L57/KkWqd2aykMeh3v3tmT4Z2CKa+y8fD/tnA8r1TrsFosg17HN+MGcP/AKP56dSwAWw+f1DgqoTVFURx91FclnmD+9mO8+vNebp2xnv0ZBRpHJ4S20tPTAalJFw1H0el46aWXAPjss89ISEjQNiAhRL213OzPSfq19WfmQ/0dIx3XRVEU7uzbBoCv/zj/4Fvrk3MA6BPlh8Wor3+gTZhRr+P9u3ozJCaQZ4bHEO7rpnVILVqoj4XJN3bBqNfx/dajjP5wPS/O2ykjvwsALosJYsqorniaDWxPy+P6/67lzSX7ZQR40WJVN3d385OadNEwVJsNPz8/rr/+elRV5ZFHHuHAgQMkJiZitcpnrxBNkSTp9ZRVUMbuY/mk55+/dvfWuDaYDDp2Hctn59G8c5Zdf9CepA9sF+iMMJs8i1HPlw/045HL2jmWXUi3AdGwcovL0Sn2xF1RFK3DES5Ap1O4d0AkyyYM5erOIVTZVKavSOa573ZoHZoQmjh+3N56TgaOEw2lODeDyfMTKO4wEp3ewObNm7njpf8ybvqvJCcnax2eEOISSJJeT/O3H+P699by5uJz90kH+yjZ13Wz902fuaHu/rw2m8qGQ/YkPb5dgHMCbQb0utNJ4O5j+Vz2xgp+uYSB+ITzPHJZO+b/ZRBPXhGDqqq8OG8nPyYc0zos4QJCfSx8PLYPM+6Jo5WvG38ZZv+BzWpTyciXaYJEy1BRUUFWln3QU4+AUI2jEU2darORkpJCYmIiKSkpnNmAzd0/lODY3kT0HwHA/qWzMbl7axSpEKK+JEmvJ4tRT6i3BT8P0wWVv2dAJAA/Jhyv84vq3vQC8ksr8TQb6N6qZc2PfqHmbjlCbnEFT32zna/Wp2odTovWo40vep3Ckj2ZfLv5CM/N3cHhnGKtwxIuYmTXUFY+P4wu4fbPsu+2HOHyt1by3vIkaQIvmr0jR46gqio6owmzl8x+IOqnusb82Tnb+fuslZTXMi96617D8AhsRXlhHgeWzm78IIUQTiFJej3dNzCKP166kpev73xB5eMi/ejX1p8Kq42PVx+qtUygp5kXRnbkwUFRGFrwoHHnMumGLtzVPwKbCpN+2sM/ft4rI0lr7KrOITx1RXtevKYjkQEeZBeVs/VwrtZhCRdw5uCXKw+coLTSyttLE3lt0X4NoxKi4aWmpgLg5hMoXYKEU7j7h+IVEoF7HWMc6PR6YkeOBeDI1t/ZunVrY4YnhHASyQDrqazSSkWV7aIGzXri8vYAzN50mOyi8rMeD/Wx8Piwdkw4NXq2OJtep/CvUV3520j7Mfp8XQqPfb2Vkgrpp64VvU5hwtWxPDwkGlVVmfjDLm6bsYGZG1K1Dk24kA/v6c20O3sSHeTBo0OjASgsq2R7mswSIJofR5LuKyO7i8bj2yaWtoOuB2Dy5MlUVrbMqXyFaMokSa+nV3/eS4e/L+K93w9e8DpDYgLp0dqHskob/12eVOOxskorR0+WODvMZklRFP4yrD3vjemFyaBj6d5Mbv9ogxw/F1BhteFlMaDXKcRF+gP2REwIRVG4qWcrlj07lDAf+0wNn6xJ4eYP1vPYzK0knyjSOEIhnOfwYfv4M5Kki8bW45a/YHT3IjExkX//+99ahyOEuEiSpNdT+ak+lRbjhR9KRVF44ZqOAMzamMbBrELHY2uTshn8+goe+GKTcwNtxm7oEc7sh/vj525k97ECftgmA5dpzWzQ887tPfnt2aF0Dvcmu6icYW+u5F+/7pV+yAKwjwJfLb+kAp0Ci/dkcPV/VjPxh50yuJxoFqpr0t0lSReNzOzpS5frHgDgn//8J9u2bdM4IiHExZAkvZ5eG92dHZOu5t4BURe13sB2gVzVOQSrTeVfv+5zLF9xwD4KbBt/d2eG2ez1ifLn5ycH8+Cgtow/1Z1AaK9toAcAC3elk1NcwbqDORh00i9T1PTqTV1Z/MxlDO9k/0z8ZtMRLntzBasST2gdmhD1cromXaZTFY0vtHN/Bg8eTFVVFWPGjKGkRFoaCtFUSJJeTyaDDh83I24m/UWvO/Gajhh0CisOnGDhrnQADufYP0Avj619QBBRt9Z+7rxyQ2fHVG0Hs4r4y6yttfb7F41rbHwUX9zflzdu7Y5Br+PHhGOMn72NY3mlWocmXESHEC8+va8P3z8WT98oPywGHb0jfAHILCiT14pokqRPutBSyclMSqOHYTrV7P25557TOiQhxAWSJL2exs/exrA3VzhqwC9GdJAnj5+aO/iVH3eTW1zB1w/3Z9Xzw2R+9HpSVZUX5u1k4a4MRr67hpWXcH6Ec13eMZiurXwor7Lyr1/38evOdH7ZIfPci5r6RPkz99F4Fj1zGV4WIwD/WZrIsDdXMPGHnaTlSE2QaBqqqqo4dsze/Upq0oVWfFq1p8+9LwLwySefsHHjRo0jEkJcCEnS6+nYyVJSc0qorLJd0vpPXNGemGBPsosqeOXH3aiqSmSABxbjxdfMi9MUReFfN3clNsSL7KJy7v9iM5N/2iP9oV2A2aDniwf6ckuvVtw/KMr+g8r3O/kx4dhFzZIgmi9FUWjlax9UzmZTOZ5fRqXV3gx+U6pM6ydcn9VqZfXq1VitVoxGIyYPX61DEi1Ym96XE9ZtIFarlbvuuov8/HytQxJCnIck6fX01m3dTzXP9L+k9c0GPW/e1gO9TuGXnemMn7WN/BIZBdsZOoZ68+MTg7h/YBQAX65PZeS7q9mQnKNtYIIu4T68c0dPzAY9q5OymbPlCM9/t5PMAumaIGrS6RT+92A/vnssnlE9w7mxRzgAWw/ncvMH61i4Kx2rTX7cEa4lOTmZZ6fPA0Bn8aSiokLjiERL1+XaBwgODubQoUPcfffdVFXJlLVCuDJJ0uupfbAXfaL88fMwXfI2erbx5S/D7PMFL9ydIfMFO5HFqGfyjV348oG+hHpbSM0pYcwnf/B/83dJra2L6N/Wn79e3YFHLosm1MfCsbxS7v1sI1ukxlScoW+UP+/eaZ9uEeDztalsT8vjL7O2MeytFXy0KpncYkmEhAs5dY2R/ujCFVSUFhIUPxpFp+PXX3/ljTfe0DokIcQ5SJJeT898u51H/rel3v0kgzwtjr9f/GEX6fkySJIzDYsN5rcJl3F3/wgA3E16FEVGGXcFFqOeJ66I4a8jYgF4//ck1iRl89ZvBwB7c2ch/mzSjZ158or2+LobOZJbytRF+xkwdTmfr03ROjQhACjNywbA4uWncSRC2IV07k/XGx8B7NOy7du37zxrCCG0Ikl6Pa1KPMFvezMpr6pfX+fFezIACPA0kVFQxv2fbya/VJq9O5O3xci/bu7G94/F8+xVHRzLF+1KZ9dR6Z/lKp68IoYx/drw/IiOAHy2NoUxH/8hNeuihmAvC89dHcuGF6/ktVu60bWVNxVVNqKD7NP+VVltfLspTT5HhWZKTmYCYPG5tO5wQjSETiPuISC6G6Wlpdx6660UFhZqHZIQohaSpNfT5Bu78K+buxLiYzl/4TrkFlewMcWegHx4TxzBXmYOZBby8FebKSqXPkPO1ifKH3eTAYCconL+Nm8nN05fy9++30FmQZnG0YlwXzem3tKduEg/bDaVL9ensuFQDodOFAOQVVgmfZCFg5tJz539IvjlySH8/MRgLouxNy1eti+LF3/YRd9/LeO5uTuke4todCW51Um6jOwuXIei09Fz9HiCg4PZu3cv999/v3w+CuGCJEmvp5t6tuLu/pF4n5oq6FJUD3zUOcybflH+fPlAP7wsBjannmTsZxspKJOaoIaiAld2DEZVYe6Wo1z2xgr+vXCf9G11ETqdwtzH4hl/eTtG9WqFqqqM+99Whr65QsZuEGfp1toHnc7ejUVRIDbEi4oqGxVWm6N7y5I9GexLL9AyTNFCFOfaW8jJ9GvC1Zg8vJk4cSJGo5EffviBZ599lsTERBITE7FaZRYcIVyBQesAmrKKKhuvL96Pm1HPk1e2x2y4tGnThsUGMeGqDo4phzqHezPr4f7c8+lGtqXlcfcnG/nsvj4Ee196bb2oXaCnmXfv7MW98ZH8e+F+th4+ycerDzF7YxoPDm7Lw0Pa1usHGFF/rXzdHE3fj+SWcDinmJIKK5EB9mbNMzek0q9tALGhXlqGKVzMiC6hXN05hD3HCxyDzVVU2Xhx3k5OllTSIcSTa7uFcX33MNoHy2tHOFdRUREVRfZuVG5Sky5cTHFuBnPSK+h47QPs+vFjpk37L+tyLLj7h/DJ+Ovo0KHD+TcihGhQUpNeD6UVVj5bm8L7Kw6icOmDkLX2c+epK2MYHdfasax7a19mjxuAn7uRXcfyGTV9HXuPS+1PQ4mL9Of7x+L54v6+dA7zpqi8iv8uT+KR/23ROjRxhjb+7mx48UpmPtgPfw8TR3JLeOWnPYyctpqMfHtXhYoqm8ZRClehKApdW/nQIcSehOeVVtC/bQBGvUJiZhHvLkti+Durufo/q0g+UaRxtKI5OXr0KAAmDx8MZjeNoxHibO7+oXS+9n7CusYDKju+fx9VatGFcBmSpNeDQa/w2NB23D8wCqP+0pL0TSm5HM+rfST3rq18mP+XQUQHeXA8v4xbZ6xnwfZj9QlZnIOiKFzeMZhfnhzM9Lt6ExPsyT0DIh2PJ58oki/yLsDNpKd/dAAAVTaVa7qGMrh9IKE+FvJLKun/b3sf5LJK+bIhagr2sjDj3ji2/P0q3rqtB1d0DMaoVzh2stTRkumPQzm8tmg/m1NzZewDcckOHz4MgGdw6/OUFEJb7YbejE+bDlSWFbP569fIzMzUOiQhBNLcvV48zAZevKbjJa9vs6k8910CR0+W8r8H+zEk5uy5VKMCPZj/+CD+Mnsr6w7m8MycBNYezObVG7vgYZbT1xB0OoXruodxTdfQGstfX7Sf3/ZmMiQmkHsHRHJFx2AMevmdS0ttAz344O44RzK1dF8mJ0sq2XM8H7NBR2mFlfdXJHFdt3A6hXnJtHsCAB83I7fGtebWuNbkl1SyL6MAi9HeXenHhON8symNGauSGd27NW/f3gOwt9CobjYvxPlUJ+leQa00jkSIc9PpDXQf/RQJ37xBYWYaDzzwAHPnzsXT05N27dqh119aV04hRP3IN456yC2uYM7mNBbvzrik9dcczOZIbimeJgNxkXXPo+rjbuR/D/bn6Stj0Cnw/dajjJy2mtWJJy41dHEBdDrFMQhVldWGin0wqjVJ2TwycytD3ljBf5cnkSUjwmtOf+o8je7dinmPx/P36zqjKAorDmQxfUUyj8y0d1uosto4mCXTzYjTfNyNDDjVMgNgeKdgbuoZjo+bkUHt7cutNpUhb/zO7R9t4L3lSWxPOym17OKc0tLSAPAMkpp04fqMbp5c9tQ7GN08SU5OZuSdD/HQf38iOTlZ69CEaLGkKrYe0nJLeGHeLlr5ujHyT7WuF6K80kqEvztXdAx2TAlWF71O4dmrOhDfLoAJcxI4klvK2M83cXOvVky8tiPBXjKoXEMy6HV8MrYPaTklzN6UxtwtR0jPL+OdpYm8uyyRwTFBvHxdJ2JCZAAqLSmKQlzk6TmJg73MjOwSSmyovRZ9w6Fs7v1sE/HRAXzzyABsNhWbqkqLCOFwZacQruwUQpXVRnUevi+9gMyCcjILytmUksvbSxPxthgYEhPEe2N6OX7ME6KaI0kPlpp00TR4BobT9caH2THvA04kJWCwuGMdf53WYQnRYsk303rwMOm5omMw8e0Czl+4Fld3CWXlX4fx/IjYC15nQHQAv00Yyv0Do1AUmL/9GMPeXMl/liZSLHOqN7iIAHdevKYjGyZewbt39KRPpB82FdYmncDb7fQo8PszCmQAMxfQJ8qfGffG8exV9pFqD2YVYdQrRAW6A7D9yEn6/GsZk37crWWYwgUZ9DpH8/aurXxY/fzl/HNUV0Z2CcXbYqCgrIqjJ0skQRe1kpp00RR5hUTQ9ebx6PQG0net55VXXsFmk+8yQmhBatLrISbEi8/v73tJ62YVlBHsbUGnUy66b7mn2cDkG7twU89wXv15LwlH8pi2PIlZGw/z0OBo7h4QIdOGNTCzQc+oXq0Y1asVqdnFbDl8kpBTU+RVVNm4bcYGwD4H+4guoQyNDTpvawnR8B4Y1JbRca0prbAPKrfqwAnySirJLakEYM/xfF76YRdXdwll/OXttQxVuJiIAHfuCYjkngGRVFlt7DyWL4MTilqVlZWRkWHvBucZ1IqTRxI1jkiICxfYvgcDHprM+k9e5vvvv+eZZ55h2rRpMqaLEI1MsoZ6yCkqJy23BD93E1GBHhe8Xm5xBcPeWknfKH/+O6YXPm6XllD3ivBj/l8Gsmh3Bm8s3k9qTgmvL97PBysOck98JGPjIwnzkalfGlpUoEeN8384pxizQU92UTkLEo6zIOE4ZoOOITGBDO0QxGUdghxzfIvG520xOn7EeurKGAbHBOFusg+MszYpmx1H8wnyMgOQkl3Mywt2c3nHYB4a3FazmIVrMeh19I6oexwR0bIlJiaiqioGiwdmL3mdiKanTdwVdM8+zs4fPuC9997DYDDw9ttvS6IuRCOSJL0e1iRl88ycBAa1D2DWwwMueL0v1qVQUmElp7gcb0v9ToGiKFzbLYyrOofwU8JxZqxKJimriA9XJvPRqmQujw1mTL8IhsUGSb/bRhIT4sXGl65ke9pJluzJYMmeTNJyS1i2L4tl+7IAWPfiFY4pn8oqrY6RpUXjMuh19Gt7ug/7zb1bEehpdiTpa5NOsPZgNjZV5aHBbTmSW8ITs7cxoF0AE6/ppFXYQggXtnfvXgA8g8IlqRFNVuuelzG6RwiTJk3iP//5DyUlJXzwwQfodPJdUojGIEl6PZgMOlr7uRFyEYO2nSyu4Mv1qQA8cXmM0y7gRr2O0XGtublXK5bvz+LTNYfYmJLL8v1ZLN+fRbCXmWu7hXF99zB6R/hJP8oGptcp9Inyp0+UPy9d24l96YWsOJDF6kR78+rqBN1mUxn02u8Ee1voF+VH37b+9IvyJ9hbBgLUQrCXhdFxp/uQDosNZvINKoGnkvYth3PZcTTfPsw/9m4ro6avo3trXz64uzc6ncLJ4gr8PEyaxC+E0I7VaiU5OZm1a9cC4Bkog8aJpu3OO++kdevWPPzww3z00Uekp6czdepUYmNjZWo2IRqYJOn1cG23MK7tFnZR67y7LJHCsio6hXlzdecQp8ek0ylc1TmEqzqHkHyiiDmbj/D91qNkFZbz5fpUvlyfSqi3hZFd7f2kB7QNwM0kH7QNSVEUOod70zncm/GXt6fKenoQlpScYnKKK8gprmBfegFfbbDPrRsZ4E6vNr50beXDTT1bOWp2ReNq4+/O/YNON3Mf3D6Id+/oifnUgGK7juVzPL8MT0sROp1CQVklvaYsJdTbwvLnhuJhNrBifxat/dxoG+ghrVmEaMaSk5MZN/1XElduBcDi5/xrvBCNRbXZSElJYfDgwbzwwgu8/sYb/PTTT6zbfYjf58+ie/fuWocoRLMmSXo9lFVasdpULEa9Y57mc0nKLOTrjfYRX1++vlOD12a3C/LkpWs78dzVHViTmM3CXeks3ZtJRkGZI2E3GXT0b+vPZTFB9I/2p3OYtyQSDezM49suyJNNL13J5tSTbE7NZVNKLvsyCjicU8LhnBIWJBzn8o7BjiT9fxtSqbKqxIZ6ERPiSZCnWZpTNqIgLzOjep2uHYtvF8CcRwZQemoAsYNZRSiKvSWFh9lAeZWVcf/bQpVNZcPEKwjzceOtJQcw6nXc3rc1YT5uWG3qBX1+CCFcn2dgOKUn7d2a3APCNY5GiEtXnJvB5Plp+LfKI+sYdLvlSXYv+JCcQ7u57777+O233wgKCtI6TCGaLUnS62HGqmTeXZbE3f0j+NfN3c5b3qDX0bWVD8FeZga2C2yECO3MBj3DO4cwvHMIZZVW1iRl8/t+e9PrY3mlrEnKZk1SNgBuRj092/jSN8qP3pF+dG3lQ6Cn1OI2pGBvC9d1D+O67vZWGQVllWw7fJJdR/PZn1FI2zMGmft0TQppuSWO+37uRmJCvOgQ4klsiBeDY4JoexGDGIr6cTcZ6B99egrG3hF+7Jo8goz8UgDySirp2sqHzIIyQr0tqKrKl+tTKSqv4ppuoYT5wH2fbyL5RBGvje7O0A5B/HEoh7ySCrq39iXcVwZ+FKIpsVmtFGYdAcAjUJJ00bS5+4fiFRJBUfZxvFv7M/Tp/7D2g7+RkJDAgAED+PXXX+nYsaPWYQrRLEmSXg9llfZmyxc66FfbQA/mPRZPcbl20/ZYjHpHc3hVVUk+UcSqxGzWJp1g6+GTFJRVseFQDhsO5TjWCfYy25trh9mbbHcI8SIywB2zQZrJNwRvi5FhscEMiw2usdxmUxnduzV7jueTlFVEak4xJ0sq2ZRir4EH+MdNXRxJ+o8Jx/hlZzpRAe5EBngQFeBBG383Qn0scu4akKfZQPtgLwBCvC0sGD8IVVVRFIWKKhtPXdmexMwiok79+JKSXUx6fhmeZvs5+Wp9Kot2Z/DK9Z15cHBbvliXwndbjnJrXGseHNyWtJwSdhzNo12QJ53DvTXbTyHE2UpOZmKrqkRnMGLxCTj/CkI0IcEdejHgoVc5OO9tDh06xIABA5g7dy5XX3211qEJ0exIkl4PfxsRy9NXxpy33MoDWexNL+Dxoe0w6HX4uLtGc3JFUWgf7EX7YC8eGtwWm00lKauILYdz2Zp6koQjeaTkFJNVWE7WgROsPHDCsa5OgVZ+bkQHehId5EF0kCeR/u6E+7rRytdN+rk3AJ1O4enhp19vZZVWDmYVkZRVyIGMIpIyC+kYejpp256Wx9K9mbVuK9DTxIDoAN6/qzcA5VVWluzJJNzHQrCXhQBPEx5m+XhwluouCSaDjkcua1fjsZ+fHExqTjEdQ+2JfbsgT3q08aVDiP1+UlYRe9MLyCu1z+W+9mA2L83fxZUdg/ns/r4kHMnj0Zlb6Bruw2f396Ws0sp7vycR5GnmngGRGPQ6jp60TxXpbtJL9wghGlDxieMAuPkGoyiuca0XwpkUnY7wqx6i9Pc55B1N4pprruHZZ59l3LhxtG/fXgaUE8JJ5Ft4Peh0ynmT0W1pJ3ly9nYKy6vwdzdxZ7+IRoru4ul0CrGhXsSGenF3/0gAisur2J9RyN70AvYeL2BvegGHsoooLK/iSG4pR3JLWZV44qxt+XuYCPe10MrXjXBfN0K9LQR6mgn0MhPoaSLIy4y/u0n6v9eDxainaysfurbyqfXx0b1bEx3kQWp2CYdziknNKeboyVLKq2xkF1VQWFblKHs8r4ynvtleY303o55ALxOBnmYCPMxMuqEzbfzdAdiedpLiciu+7kZ83Iz4uBvxMhskAbwE/h4m/M8YDf6vI2L564hYx/3HLmvH8E7BRJw69j5uRvpF+dPl1HnPLCgjs6CcMJ8KAE4UljN9RTImg477BkYBcM27aygsr2LFX4fRNtCDCXMSOJZXygvXdKR3hB+/7cngcE4JA9sH0CXch6zCMgpKKwnwMMtI9UJchMITRwFw9w8+T0khmi6fVu258oWPWfvhC2Tu3cTbb7/Nl/OX8PGbr9K1a1cA2rVrJwm7EPXgEkn69OnTefPNN8nIyKBHjx6899579OvXr87y3333HS+//DKpqanExMTw+uuvc+211zZixBdGVVVeW7SfwvIq+rf15+beTW86Fg+zgbhIP+Ii/RzLVFXlRFE5KSeKOZRdzKETRRw6YU8Aj+WVUlReRW5xBbnFFew+VlDnthUF/N1PJYGeJnuyd+rmfcbfZ948LQY8TAYsRp0khOfRrbUP3VrXTOBVVeVkSSXH80rRnXH8qqw2+rX153heKdlF5ZRV2iittDp+iAGYdENnR/m3fjvAuoM5NbatU3Ccp1t6t+apU61MDmYV8t3Wo3iaDHiYDXiY9af+N+Bptp/P2FAvGTytDhEB7kQEuDvunzl+AcCg9oH88uRgbKoK2Gvr74uPpMpmb2JfXmXFeuoxP3cjAAlH8jiUXUxFlb3LzoKEYyzclcHkGzrTJdyHbzcd4Z2lidzVP4J/39yNJXsyeP67HQxsF8iMe+M4nlfK/83fRYi3hddGd0dVVT5YmYybUc9d/SOwGPWsT87GZrO/Dn3cjJwoLMemqvi4GS+4i5AQTU1hRipgH0BOiObMYDLT4co78I3sTNLSWeQc2s3dDzxC7zufxWBx55Px19GhQwetwxSiydI8SZ8zZw4TJkxgxowZ9O/fn3fffZcRI0Zw4MABgoPP/iV6/fr1jBkzhqlTp3L99dcze/ZsRo0axbZt2xy/3mnteF4pHiYDPu5GZtwTx9u/HeD/ruvUbPoBK4pCsJe9WfSZg2ZVyy+1J4HHTpZyPN/+f2ZBGdlFFWQXlZNdVE5OcQWqimP6MWpvlX2OGMDDZMDdZE/43E16+32z3rHc3aTHYtRjNugwV/9v0GE26DEbdZj0OszGU/fPWG426DDqdRj0CkadDv2p/w16BYNOadI/DiiKclbNLUBMiBdzH40H7Il8cYWVnFPn6kRhBTnF5TWmgQvzcaNDiCf5pZXklVRSXmXDpsLJkkpOllRScKppNthHPP9o1aFzxnXgnyPR6+zvj6v/s4r0vDLMRj0Wow5L9f8G+/m8s18bru9u/wK8JTWXRbszHI+7mfRnnD8dHiY915wxTeIfh3LQ6xSMeh1GvYLpVLnqv73PSCCr+5G7Ok+zoUZrihBvC6/edPqz0GzQs/cfIykur8L9VMuff9/SjazCckeT+gHRAZj0OmLP6C7h627E182e1OeXVlJQVkVZlX08jeyiclYcOEGYjwWA8iobby45AMBtfVpjMeqZ+MMuDueUMO/xeOIi/Zn4wy6W7cvk3zd3467+EfxnaSJfrEvh/oFRTLg6lt/3ZzJtWRJ9o/z5+/WdOZxTzNSF+wn2NvOPm7pSabUxdeF+TAYdzwyPwWLUM3fzEcqrrIzsGkaQl5mth3PJKaqgaysfwn3dOJxTTGZBOeG+Flr7uZNfUklWYRmeFgNhPm5UVNnIK63ArNfj425EVVXHaPtN4dwL11OQbp9G0yOo6f0oL8TFUhSFVj2H0abnYNa8/zxlBTls+HQS7YfeQlXVCK3DE6JJ0zxJf+eddxg3bhwPPPAAADNmzODXX3/l888/58UXXzyr/LRp0xg5ciTPP/88AFOmTGHp0qW8//77zJgxo1FjB9h7vID9GQWUVlo5erKU7Wkn2ZSSyyOXtePFazri72G6oJHfm5Pq2tROYXUPalVltZFbUkF2oT1xzy2uIL+0stZbwRl/l1TYkwRVhaLyKorKq6CwvLF2DbBPr6XXKRh1Cga9DoNOOZXAn07kHX+felyngE5R7DfdGX+fmq5L+dPfeuWMdXR1/F3HNsD+I4aCcup/+4LqlOPPjykKNRKS2h4HmLnhsOPvTmH2gQSr71dZbZRX2SirtFJWacXDYuDrP+xfVtPzSxnULoCKU2Uqquz/l1dZKa+yUWVV+THhuOP50/PLKCyvorD8dHP8M/m6Gx2DNq5NOsGCM9b9M0+zwfGaAXjhh51UWdU6y4/p14Z+bf0BWLQ7g6V7Mh1TqilKzWMf5mNh/OXtURR7n/63liSiKDXPrf182f++qWc4kacGi1uTdIL9GUXoHMf4zONt3/aILqEAFJZV8mPCccd5qj4n1S0hFAWu6hSCn4cJBYUNh3JIzyuts3wrPzd6R/hh0Cks2p3OxkO5jjJzNqcxZ3MaCnB5hyDS88uYv+0oRp3CpOs7s+d4Ps/NTaCs0kpchC86ReGv3+2gymojKsAds0HHqgMn0OsUzAYdPm5GPll9iLluR9h7PB8F+4CGO4/msS3NPlDlgcxCFu1KZ9bGw+w4ms+JonJKKqxkF5Xz295MPM16rDaVUC8zn69LAcDfw8iR3BLmbTtGSYWVDck5BHqaWbYvk+P5ZQxpH8hd/SP4futRlu/PonsrH3pH+pKUWcS65Bxa+7lxVacQThSW88uudHzdjEy9pRtllVaenbsDgLEDIjDodfyw7RillVZGdg0lwMPE2oPZZBdVcGvvVvSK8MPTYmBIjExDJKC4uJji3AwAPCVJFy1IQFRneo95juQ1P5G1bxNJK75j9Ohd/Pe//yUyMlKavgtxCTRN0isqKti6dSsTJ050LNPpdAwfPpwNGzbUus6GDRuYMGFCjWUjRoxgwYIFtZYvLy+nvPx0EldQUHfz60vx667jTF+RfNbyxMzCJlMTpwWDXueojb8YVptKaaWVkvIqiiusFJdXUVJhpaTC/n/1/eKKKkrKrY5EsLzSnhRWWKv/tp312J8TyCqbilpLPme12Wvb7D2AtRupvzn52/c7L7jsLzvT+WVn+gWVLSqv4rnvdlzwtr/ZdIRvNh2psUxVwWZVgZovhqSsIp6Zk3DB235nadIFlwUueB8BVidmX9S2IeWCS87ffuycj28+fLLG/Sf+NLbB4j01m8lsTMll46nZCACW7MlkyRlljueVMXtTmuN+UbmVWRvTamzj3wv317i/cHdGjftrDmaz5uDpY7LzWD47j+U77h89WcoX61Md9/NKK3l81rYa2/jfHzWf88c//Rj08ZoUIIWYYE+WThiKEImJiaCqWHwCMbl7aR2OEI3KaHGny02P0zb+GrZ8/Tr79+9n5LXXEdHvan75+HW6dOmidYhCNCmaJunZ2dlYrVZCQkJqLA8JCWH//v21rpORkVFr+YyMjFrLT506lVdffdU5AdeiXZAnQ2ICcTPqCfIy0zHMm2EdghwDbAnn0usUPE/1ZW4MVptKlc1e21tlU6my2uz/n/m3VaXSanOUrbTak/jqZZVWFVVVsalgU9XTNxtYVfVUE1v7Y9XNbWuWPfW3rfa/7duwx6qqoHL6xwVVVVHh9H2qy1QvO7Ps2Y+rOFY8tUw947Gaz8GZ61/I89VxzNXafhmpfqzOdepc5aKe58wf1qp/jDnrmJw63opinycd7OehoKzy7ON0Kjibap9az2SwD5RYUFpJaaUV2xm5v3pGpCa9Dn9Pe5eEKquNzMLyM8qdPpbV/4Z4WTAZdKjYB44rrbQ6zseZB0LF3k2kuutCWaWV46fmdD/7WNj/j/B3cwzweDyvlLJKWy3H1L7Ex81IoKd928XlVWTkl9V5/AGigzwcNfyHc0qosNr+vEmHAM/T3TTySyvJLCg/u9ApOkWhfbCn4/7BrCKstrojCfYy4edhto+3UVhBdnG5o1WDzWY/irpTLRP0ikKYr8XRraK1n3zWC7t9+/YB4Nfm/LO+CNEcKYpCVP8RqDYrSSvmcfLwPlLX/8ottyTx1VdfMWDAAK1DFKLJ0Ly5e0ObOHFijZr3goIC2rRp47Tt39K7Nbf0bu207QnXYm/arkdmIxNCCHEu1Um6ryTpooWzePvTc8zfKM44xPa575KYmMjAgQN58MEHmTJlCmFhYeffiBAtnKbzXwUGBqLX68nMrNkcMjMzk9DQ0FrXCQ0NvajyZrMZb2/vGjchhBBCCGfas2cPAH5tZERrIRRFoW38NQx98m1uvvlmVFXls88+IyYmhn/+85+UlJRoHaIQLk3TJN1kMhEXF8fy5csdy2w2G8uXLyc+Pr7WdeLj42uUB1i6dGmd5YUQQgghGlJxcbGjm15AW+l7K0Q1o5snjz76KN988w09evSguLiYl19+mdjYWD7++GMqKiq0DlEIl6Rpkg4wYcIEPvnkE7766iv27dvH448/TnFxsWO097Fjx9YYWO7pp59m8eLFvP322+zfv5/JkyezZcsWnnjiCa12QQghhBAt2ObNm7FarVi8/XH3Dzn/CkK0EMW5GUyen8DMJAXvy8byzjvvEBERwdGjR3n00UeJiYmRZF2IWmiepN9xxx289dZbvPLKK/Ts2ZOEhAQWL17sGBwuLS2N9PTToxwPHDiQ2bNn8/HHH9OjRw++//57FixY4DJzpAshhBCiZVm/fj0AfhHS1F2IP3P3D8UrJALPgDA6d+7Mzz//zEsvvURoaChpaWmOZP0///mP02dhEqKpconhsJ544ok6a8JXrlx51rLbbruN2267rYGjEkIIIYQ4v+ok3be1JOlC1MVeq56Gf6s8iooCWbJkCStWrOC1114jLS2NCRMmMGnSJG655Rbuvfde2rRpU+sc61arleTk09MfyzzsojnSvCZdCCGEEKKpslqtp2vSZWR3Ic6pulbdwz+U9PR0rrnmGhYuXMikSZOIjo6msLCQr776iuFXXUX8iJuZMWMGlZWVNbaRnJzMuOm/8uyc7Yyb/muNhF2I5kKSdCGEEEKIS7R9+3ZOnjyJh4cH3uFttQ5HiCahuq/6s3O288h/5rIkw43Ysf8k5orb8W/bFVSV3NS9PPHEE7Ru3Zq//vWvjhkUADwDw+1N6APDNdwLIRqOSzR3F0IIIYRoin777TfAPvuMTi9fq4S4UNW16kXZxzF4+OMdFkVY1wG06X8tZouZA0tnU7B/A1lZWbz99tu8/fbbdOnShSuuuIIiovAKiUC12UhJSXFsU5q+i+ZCriZCCCGEEJfAarXy448/AtCxY0eSVY0DEqKZ8A6NJHb4GMa/+ChpaWl8//33rF69mj179jhq1H3Co/Fp1Y7ntrcnotcQinMz+GT8dXToIGNDiKZPknQhhBBCiEuwfft2Nm/ZCsDKo5UEe5VpHJEQzUdxbgb//DkN/1ZRFLTqR897hlCRn8XhTb9RkJ5K/vFD5B8/BCwladksAtp25RPTcW666SaCg4OlVl00aZKkCyGEEEJcgmXLlqHarHiHt8U/IlbrcIRodv7cJD4ofgS+bWJQdWbK8zJIWfczJ48kUlFcQPru9by1ez1vvfUWbj6BXDYgjiuuuIK+ffty2WWXScIumhRJ0oUQQgghLsHChQsBiOgzXONIhGhZjG4ehHe6Bou3Hzo3H3S2CpJWfM/JIwcpykqjND+bJUuWsGTJEgBCQ0OJj4+nT58+jpu/v7/GeyFE3SRJF0IIIYS4SMePH2fDhg0AtIm7guKcdI0jEqJl0un0BEX3oKq8lBgPf3yCw0j8fS6FWccpykrj5OF9ZGRkMH/+fObPn+9Yr02bNvTp04euXbvSpUsXOnfuTIcOHTCbzRrujRB2kqQLIYQQQlykGTNmUFVVhV9kR7xDIyVJF8JFmNy9CGjbhZCuQwiK6kBu6n6u9s8hOzubP/74g40JeyjLz+bIkSMcOXKkRuKu1+uJjIykXbt2RERE0KZNG/r160dMTAyRkZEYjUYN90y0JJKkCyGEEEJchLy8PD744AMAovqP0DgaIcS5lBfnMS/Xin+rXhRHKAwc+AA+QaEcXLOAgoyj2CpKyE07QFl+NtaKcg4dOsShQ4fO2o5OpyMiIoK2bdvSqlWrGrfw8HBatWpFaGioJPLCKSRJF0IIIUS9TJ8+nTfffJOMjAx69OjBe++9R79+/eos/9133/Hyyy+TmppKTEwMr7/+Otdee63jcVVVmTRpEp988gl5eXkMGjSIDz/8kJiYmMbYnXOyWq0888wz5OTkEBERQXDHuvdTCOEazhyADsDk4Y1fmw4EdRxAUFQH0vf8gd7dD09ff1I2LKS8uAhsleQfPYilLJvMzEzKy8tJTU0lNTW1zudRFAV/f3/8/f3x9fXFz88PPz8//P39iYmJITg4mMDAQPz9/fHx8cHDw4OcnBzMZjOKopx3RHqr1UpycrLjvoxg33xJki6EEEKISzZnzhwmTJjAjBkz6N+/P++++y4jRozgwIEDBAcHn1V+/fr1jBkzhqlTp3L99dcze/ZsRo0axbZt2+jatSsAb7zxBv/973/56quvaNu2LS+//DIjRoxg7969WCyWxt7FGj744AO++uorAMzt+1NZWalpPEII51AUBXe/IPwjY+0jyZ9K3ivKK+gSHklu6j5u7+qD1Wpl//79LN6ahK2ynOKcTNzUUnJzc6mqqiInJ4ecnJyLe26dHr3JTKCvN76+vnh5eREcHIyPjw/u7u6Ul5fj5uZGaWkp6w7l4+YXSGV5KY9f24/27dvj7u7uuJnNZkwmU603SeibDknShRBCCHHJ3nnnHcaNG8cDDzwA2Ptq//rrr3z++ee8+OKLZ5WfNm0aI0eO5PnnnwdgypQpLF26lPfff58ZM2agqirvvvsuf//737npppsA+N///kdISAgLFizgzjvvbLydAzIzM9mwYQP79u1j69atjv6r7YfeQljX+EaNRQjR+Nz9Qx3jTnyXWIF/qyiyKnPpeO1lNRL5uLAIju/egMk7CA9vXzL2b8ZmUzGaTJxMO0B5cSGoNsryc3DXVVFWVkZRURGqqqLarFSVlZCRUUJGRsYFx/bs0m8ual90Oh1Go7HWm8lkwmAwoNfrHf9X/63T6TAYDBgMBhRFwWAwMGnSJHx9fR21+WfW8lutVgDH8tr+BtdtCeAKLRZaXJKuqioABQUFGkcihBBC2FVfk6qvUU1FRUUFW7duZeLEiY5lOp2O4cOHO0Y+/7MNGzYwYcKEGstGjBjBggULAEhJSSEjI4Phw09Pa+bj40P//v3ZsGFDnUl6eXk55eXljvv5+flA/a/3q1at4o477qixLDAmjqj4a8hJ2YvevQC9YqMw84j8LX/L383+bx8qy0qwVpRTkJFaY3lVRRk6vQFVtWF098TNJxC9uw9+YRGYPHwcf2cn76KivAzvoHBy0xLxCGyNh18AJw7uBJ0Rdy8fctP2U15agslspjgnE4ObJyaLhaKcTEBBbzRSlp+DtbIcRdFRWVaMarOi2mxYqypQbTZQbfCna4rNZjvrs/JSZfp1w1pZxst3XEZUVBSpqalMmbMaN59ATh5JQm/xwDsovM6/S/OzHeu6mjP3pTQ/m89eGEv79u3rvd2Luda3uCS9sLAQsE+7IIQQQriSwsJCfHx8tA7jgmVnZ2O1WgkJCamxPCQkhP3799e6TkZGRq3lq2uPqv8/V5naTJ06lVdfffWs5Q1xvc9O2sqy18Y5fbtCCNFUbJ31OgCj50675G3UZ93GFOfkOC/kWt/ikvTw8HCOHDmCl5cXiqLUa1sFBQW0adOGI0eO4O3t7aQIG4/Er72mvg8Sv7Ykfm05M35VVSksLCQ8PNxJ0bU8EydOrFFDb7PZyM3NJSAgoMVf7+si+9W0yH41LbJfTUtj7NfFXOtbXJKu0+lo3bq1U7fp7e3dpF+kEr/2mvo+SPzakvi15az4m1INerXAwED0ej2ZmZk1lmdmZhIaGlrrOqGhoecsX/1/ZmYmYWFhNcr07NmzzljMZjNms7nGMl9f3wvdlQvS1F+rdZH9alpkv5oW2a+mpaH360Kv9boGi0AIIYQQzZrJZCIuLo7ly5c7ltlsNpYvX058fO2DqsXHx9coD7B06VJH+bZt2xIaGlqjTEFBARs3bqxzm0IIIURz0uJq0oUQQgjhPBMmTOC+++6jT58+9OvXj3fffZfi4mLHaO9jx46lVatWTJ06FYCnn36aoUOH8vbbb3Pdddfx7bffsmXLFj7++GPAPg3SM888wz//+U9iYmIcU7CFh4czatQorXZTCCGEaDSSpNeD2Wxm0qRJZzWvayokfu019X2Q+LUl8WurqcfvLHfccQcnTpzglVdeISMjg549e7J48WLHwG9paWnodKcb7g0cOJDZs2fz97//nZdeeomYmBgWLFjgmCMd4G9/+xvFxcU88sgj5OXlMXjwYBYvXqzZHOnN9VzLfjUtsl9Ni+xX0+Jq+6WoTW2+FyGEEEIIIYQQopmSPulCCCGEEEIIIYSLkCRdCCGEEEIIIYRwEZKkCyGEEEIIIYQQLkKSdCGEEEIIIYQQwkVIkn4e06dPJyoqCovFQv/+/dm0adM5y3/33Xd07NgRi8VCt27dWLhwYSNFWtPUqVPp27cvXl5eBAcHM2rUKA4cOHDOdb788ksURalx02okXYDJkyefFU/Hjh3PuY6rHH+AqKios+JXFIXx48fXWl7r47969WpuuOEGwsPDURSFBQsW1HhcVVVeeeUVwsLCcHNzY/jw4SQlJZ13uxf7HmqI+CsrK3nhhRfo1q0bHh4ehIeHM3bsWI4fP37ObV7Ka7Ah4ge4//77z4pl5MiR592uKxx/oNb3gqIovPnmm3VuszGP/4V8ZpaVlTF+/HgCAgLw9PRk9OjRZGZmnnO7l/q+Ea6jsd5DjaUx31cNraGuW1prqOuBlhrqM1ZrF7Jfw4YNO+t8PfbYYxpFfGE+/PBDunfvjre3N97e3sTHx7No0SLH403xXFU73765yvmSJP0c5syZw4QJE5g0aRLbtm2jR48ejBgxgqysrFrLr1+/njFjxvDQQw+xfft2Ro0axahRo9i9e3cjRw6rVq1i/Pjx/PHHHyxdupTKykquvvpqiouLz7met7c36enpjtvhw4cbKeLadenSpUY8a9eurbOsKx1/gM2bN9eIfenSpQDcdtttda6j5fEvLi6mR48eTJ8+vdbH33jjDf773/8yY8YMNm7ciIeHByNGjKCsrKzObV7se6ih4i8pKWHbtm28/PLLbNu2jR9++IEDBw5w4403nne7F/MarI/zHX+AkSNH1ojlm2++Oec2XeX4AzXiTk9P5/PPP0dRFEaPHn3O7TbW8b+Qz8xnn32Wn3/+me+++45Vq1Zx/PhxbrnllnNu91LeN8J1NOZ7qDE11vuqoTXEdcsVNMT1QGsN9RmrtQv9vj1u3Lga5+uNN97QKOIL07p1a1577TW2bt3Kli1buOKKK7jpppvYs2cP0DTPVbXz7Ru4yPlSRZ369eunjh8/3nHfarWq4eHh6tSpU2stf/vtt6vXXXddjWX9+/dXH3300QaN80JkZWWpgLpq1ao6y3zxxReqj49P4wV1HpMmTVJ79OhxweVd+firqqo+/fTTart27VSbzVbr4650/AF1/vz5jvs2m00NDQ1V33zzTceyvLw81Ww2q998802d27nY95Cz/Dn+2mzatEkF1MOHD9dZ5mJfg85SW/z33XefetNNN13Udlz5+N90003qFVdccc4yWh1/VT37MzMvL081Go3qd9995yizb98+FVA3bNhQ6zYu9X0jXIdW76GGpOX7qiE567rlapx1PXA1zviMdUW1fd8eOnSo+vTTT2sXlJP4+fmpn376abM5V2eq3jdVdZ3zJTXpdaioqGDr1q0MHz7csUyn0zF8+HA2bNhQ6zobNmyoUR5gxIgRdZZvTPn5+QD4+/ufs1xRURGRkZG0adPmrF+VtJCUlER4eDjR0dHcfffdpKWl1VnWlY9/RUUFX3/9NQ8++CCKotRZztWOf7WUlBQyMjJqHF8fHx/69+9f5/G9lPdQY8rPz0dRFHx9fc9Z7mJegw1t5cqVBAcHExsby+OPP05OTk6dZV35+GdmZvLrr7/y0EMPnbesVsf/z5+ZW7dupbKyssbx7NixIxEREXUez0t53wjX4crvofpypc+1htLc338Xcz1wRc74jHVFdX3fnjVrFoGBgXTt2pWJEydSUlKiRXiXxGq18u2331JcXEx8fHyzOVdw9r5Vc4XzZWj0Z2wisrOzsVqthISE1FgeEhLC/v37a10nIyOj1vIZGRkNFueFsNlsPPPMMwwaNIiuXbvWWS42NpbPP/+c7t27k5+fz1tvvcXAgQPZs2cPrVu3bsSI7fr378+XX35JbGws6enpvPrqqwwZMoTdu3fj5eV1VnlXPf4ACxYsIC8vj/vvv7/OMq52/M9UfQwv5vheynuosZSVlfHCCy8wZswYvL296yx3sa/BhjRy5EhuueUW2rZtS3JyMi+99BLXXHMNGzZsQK/Xn1XelY//V199hZeX13mbxml1/Gv7zMzIyMBkMp31o8653gOX8r4RrsOV30P14Uqfaw2pOb//NYEimAAAHNtJREFULvZ64Gqc9Rnraur6vn3XXXcRGRlJeHg4O3fu5IUXXuDAgQP88MMPGkZ7frt27SI+Pp6ysjI8PT2ZP38+nTt3JiEhocmfq7r2DVznfEmS3gKMHz+e3bt3n7fPWXx8fI1fkQYOHEinTp346KOPmDJlSkOHeZZrrrnG8Xf37t3p378/kZGRzJ0794Jq4FzJZ599xjXXXEN4eHidZVzt+DdXlZWV3H777aiqyocffnjOsq70Grzzzjsdf3fr1o3u3bvTrl07Vq5cyZVXXtmosdTX559/zt13333egRG1Ov4X+pkpRFPkSp9r4tI09etBc/2MrWu/HnnkEcff3bp1IywsjCuvvJLk5GTatWvX2GFesNjYWBISEsjPz+f777/nvvvuY9WqVVqH5RR17Vvnzp1d5nxJc/c6BAYGotfrzxqpMDMzk9DQ0FrXCQ0NvajyjeGJJ57gl19+YcWKFRddG2s0GunVqxcHDx5soOgujq+vLx06dKgzHlc8/gCHDx9m2bJlPPzwwxe1nisd/+pjeDHH91LeQw2tOkE/fPgwS5cuPWctem3O9xpsTNHR0QQGBtYZiysef4A1a9Zw4MCBi34/QOMc/7o+M0NDQ6moqCAvL69G+fNdE6rLXOg6wnW46nvI2Vzpc82ZWtL773zXA1fizM9YV3Ix37f79+8P4PLny2Qy0b59e+Li4pg6dSo9evRg2rRpTf5cQd37Vhutzpck6XUwmUzExcWxfPlyxzKbzcby5ctr1HaeKT4+vkZ5gKVLl9ZZviGpqsoTTzzB/Pnz+f3332nbtu1Fb8NqtbJr1y7CwsIaIMKLV1RURHJycp3xuNLxP9MXX3xBcHAw11133UWt50rHv23btoSGhtY4vgUFBWzcuLHO43sp76GGVJ2gJyUlsWzZMgICAi56G+d7DTamo0ePkpOTU2csrnb8q3322WfExcXRo0ePi163IY//+T4z4+LiMBqNNY7ngQMHSEtLq/N4Xsr7RrgOV30POZsrfa45U0t6/53veuAKGuIz1hVcyvfthIQEAJc+X7Wx2WyUl5c32XN1LtX7VhvNzpemw9a5uG+//VY1m83ql19+qe7du1d95JFHVF9fXzUjI0NVVVW999571RdffNFRft26darBYFDfeustdd++feqkSZNUo9Go7tq1q9Fjf/zxx1UfHx915cqVanp6uuNWUlLiKPPn+F999VV1yZIlanJysrp161b1zjvvVC0Wi7pnz55Gj19VVfW5555TV65cqaakpKjr1q1Thw8frgYGBqpZWVm1xu9Kx7+a1WpVIyIi1BdeeOGsx1zt+BcWFqrbt29Xt2/frgLqO++8o27fvt0x+vlrr72m+vr6qj/++KO6c+dO9aabblLbtm2rlpaWOrZxxRVXqO+9957j/vneQ40Vf0VFhXrjjTeqrVu3VhMSEmq8J8rLy+uM/3yvwcaKv7CwUP3rX/+qbtiwQU1JSVGXLVum9u7dW42JiVHLysrqjN9Vjn+1/Px81d3dXf3www9r3YaWx/9CPjMfe+wxNSIiQv3999/VLVu2qPHx8Wp8fHyN7cTGxqo//PCD4/6FvG+E62rM91Bjacz3VUNzxnXLFTnjeuBqnPUZ62rOt18HDx5U//GPf6hbtmxRU1JS1B9//FGNjo5WL7vsMo0jP7cXX3xRXbVqlZqSkqLu3LlTffHFF1VFUdTffvtNVdWmea6qnWvfXOl8SZJ+Hu+9954aERGhmkwmtV+/fuoff/zheGzo0KHqfffdV6P83Llz1Q4dOqgmk0nt0qWL+uuvvzZyxHZArbcvvvjCUebP8T/zzDOOfQ0JCVGvvfZaddu2bY0f/Cl33HGHGhYWpppMJrVVq1bqHXfcoR48eNDxuCsf/2pLlixRAfXAgQNnPeZqx3/FihW1vmaqY7TZbOrLL7+shoSEqGazWb3yyivP2q/IyEh10qRJNZad6z3UWPGnpKTU+Z5YsWJFnfGf7zXYWPGXlJSoV199tRoUFKQajUY1MjJSHTdu3FmJgqse/2offfSR6ubmpubl5dW6DS2P/4V8ZpaWlqp/+ctfVD8/P9Xd3V29+eab1fT09LO2c+Y6F/K+Ea6tsd5DjaUx31cNzRnXLVfkjOuBq3HWZ6yrOd9+paWlqZdddpnq7++vms1mtX379urzzz+v5ufnaxv4eTz44INqZGSkajKZ1KCgIPXKK690JOiq2jTPVbVz7ZsrnS9FVVW1fnXxQgghhBBCCCGEcAbpky6EEEIIIYQQQrgISdKFEEIIIYQQQggXIUm6EEIIIYQQQgjhIiRJF0IIIYQQQgghXIQk6UIIIYQQQgghhIuQJF0IIYQQQgghhHARkqQLIYQQQgghhBAuQpJ0IRqYoigsWLCgzsdXrlyJoijk5eU1WkxaS01NRVEUEhISGvR5znfshRBCuKaSkhJGjx6Nt7d3i7lGNta18WIMGzaMZ555RuswmoT777+fUaNGafLcF3ueLuS755dffomvr2+9YxOXRpJ0IeohIyODJ598kujoaMxmM23atOGGG25g+fLlF7yNgQMHkp6ejo+PTwNGKoQQoiU7ceIEjz/+OBEREZjNZkJDQxkxYgTr1q3TOrRaffXVV6xZs4b169fLNVKI8/jhhx+YMmWK1mEIJzJoHYAQTVVqaiqDBg3C19eXN998k27dulFZWcmSJUsYP348+/fvv6DtmEwmQkNDGzjahlFZWYnRaNQ6DCGEEOcxevRoKioq+Oqrr4iOjiYzM5Ply5eTk5OjdWi1Sk5OplOnTnTt2lXrUC5aY14bKyoqMJlMjfJcTZ2qqlitVgyG5pP+VJ9/f39/rUMRTiY16UJcor/85S8oisKmTZsYPXo0HTp0oEuXLkyYMIE//vijRtns7Gxuvvlm3N3diYmJ4aeffnI8diFNjnbs2MHll1+Ol5cX3t7exMXFsWXLFsfjX375JREREbi7u3PzzTfz9ttv12iiVFsTrGeeeYZhw4Y57i9evJjBgwfj6+tLQEAA119/PcnJyY7Hq5vhzZkzh6FDh2KxWJg1axYAn376KZ06dcJisdCxY0c++OCDGs+1adMmevXqhcVioU+fPmzfvv2cx/all16if//+Zy3v0aMH//jHPwDYvHkzV111FYGBgfj4+DB06FC2bdtW5zZrO84JCQkoikJqaqpj2dq1axkyZAhubm60adOGp556iuLiYsfjH3zwATExMVgsFkJCQrj11lvPuS9CCKG1vLw81qxZw+uvv87ll19OZGQk/fr1Y+LEidx4441A7U2t8/LyUBSFlStXAqc/R5csWUKvXr1wc3PjiiuuICsri0WLFtGpUye8vb256667KCkpOWdM8+bNo0uXLpjNZqKionj77bcdjw0bNoy3336b1atXoyhKjWvVmVratREgKiqKKVOmMHbsWLy9vXnkkUcAeOGFF+jQoQPu7u5ER0fz8ssvU1lZ6Vhv8uTJ9OzZk5kzZxIVFYWPjw933nknhYWFjjLFxcWMHTsWT09PwsLCapyTaidPnmTs2LH4+fnh7u7ONddcQ1JSUo1j7uvryy+//EJsbCzu7u7ceuutlJSU8NVXXxEVFYWfnx9PPfUUVqu1zv28kHjLy8t56qmnCA4OxmKxMHjwYDZv3ux4vPr1umjRIuLi4jCbzaxdu5Zhw4bx5JNP8swzz+Dn50dISAiffPIJxcXFPPDAA3h5edG+fXsWLVrk2JbVauWhhx6ibdu2uLm5ERsby7Rp0857vqoVFBTg5uZWY5sA8+fPx8vLy/F+udDz+Omnn9K2bVssFgtwdnP3mTNn0qdPH7y8vAgNDeWuu+4iKyvrrLjWrVtH9+7dsVgsDBgwgN27d59zP3788Ud69+6NxWIhOjqaV199laqqKsD+I8jkyZMdrXXCw8N56qmnLvgYiT9RhRAXLScnR1UURf33v/993rKA2rp1a3X27NlqUlKS+tRTT6menp5qTk6OqqqqumLFChVQT548Wec2unTpot5zzz3qvn371MTERHXu3LlqQkKCqqqq+scff6g6nU59/fXX1QMHDqjTpk1TfX19VR8fH8f69913n3rTTTfV2ObTTz+tDh061HH/+++/V+fNm6cmJSWp27dvV2+44Qa1W7duqtVqVVVVVVNSUlRAjYqKUufNm6ceOnRIPX78uPr111+rYWFhjmXz5s1T/f391S+//FJVVVUtLCxUg4KC1LvuukvdvXu3+vPPP6vR0dEqoG7fvr3W/d29e7cKqAcPHjxrWVJSkqqqqrp8+XJ15syZ6r59+9S9e/eqDz30kBoSEqIWFBTUOPbz58+v8zhv375dBdSUlBRVVVX14MGDqoeHh/qf//xHTUxMVNetW6f26tVLvf/++1VVVdXNmzerer1enT17tpqamqpu27ZNnTZtWp3nTQghXEFlZaXq6empPvPMM2pZWVmtZao/48/8XD558qQKqCtWrFBV9fTn6IABA9S1a9eq27ZtU9u3b68OHTpUvfrqq9Vt27apq1evVgMCAtTXXnutzni2bNmi6nQ69R//+Id64MAB9YsvvlDd3NzUL774QlVV+zV23Lhxanx8vJqenu64Xv5ZS7s2qqqqRkZGqt7e3upbb72lHjx40HGdnDJlirpu3To1JSVF/emnn9SQkBD19ddfd6w3adIk1dPTU73lllvUXbt2qatXr1ZDQ0PVl156yVHm8ccfVyMiItRly5apO3fuVK+//nrVy8tLffrppx1lbrzxRrVTp07q6tWr1YSEBHXEiBFq+/bt1YqKClVVVfWLL75QjUajetVVV6nbtm1TV61apQYEBKhXX321evvtt6t79uxRf/75Z9VkMqnffvttnft5IfE+9dRTanh4uLpw4UJ1z5496n333af6+fmd9f2qe/fu6m+//aYePHhQzcnJUYcOHap6eXmpU6ZMURMTE9UpU6aoer1eveaaa9SPP/5YTUxMVB9//HE1ICBALS4uVlVVVSsqKtRXXnlF3bx5s3ro0CH166+/Vt3d3dU5c+ac8/V0pltvvVW95557aiwbPXp0jWUXch49PDzUkSNHqtu2bVN37NihqqqqDh06tMZ5+uyzz9SFCxeqycnJ6oYNG9T4+Hj1mmuucTxefWw6deqk/vbbb47zHRUVVeNcnvl+Wb16tert7a1++eWXanJysvrbb7+pUVFR6uTJk1VVVdXvvvtO9fb2VhcuXKgePnxY3bhxo/rxxx/XeTzEuUmSLsQl2LhxowqoP/zww3nLAurf//53x/2ioiIVUBctWqSq6oUl6V5eXo4L+5+NGTNGvfbaa2ssu+OOOy76i8ifnThxQgXUXbt2qap6+ovIu+++W6Ncu3bt1NmzZ9dYNmXKFDU+Pl5VVVX96KOP1ICAALW0tNTx+IcffnjeLyI9evRQ//GPfzjuT5w4Ue3fv3+d5a1Wq+rl5aX+/PPPjmUXm6Q/9NBD6iOPPFJju2vWrFF1Op1aWlqqzps3T/X29q7xQ4AQQjQF33//vern56daLBZ14MCB6sSJEx1f8FX14pL0ZcuWOcpMnTpVBdTk5GTHskcffVQdMWJEnbHcdddd6lVXXVVj2fPPP6927tzZcf981yhVbZnXxsjISHXUqFF1Pl7tzTffVOPi4hz3J02apLq7u9e4fj3//POO62phYaFqMpnUuXPnOh7PyclR3dzcHMlfYmKiCqjr1q1zlMnOzlbd3Nwc633xxRdn/cj+6KOPqu7u7mphYaFj2YgRI9RHH320zvjPF29RUZFqNBrVWbNmOR6vqKhQw8PD1TfeeENV1dOv1wULFtTY9tChQ9XBgwc77ldVVakeHh7qvffe61iWnp6uAuqGDRvqjHH8+PHq6NGjHffPl6TPnz9f9fT0dCT++fn5qsVicXwfrE1t59FoNKpZWVln7dOZSfqfbd68WQUc56D62Jz5Q0n1+a7+4eHPSfqVV155VuXUzJkz1bCwMFVVVfXtt99WO3To4EjyRf1Ic3chLoGqqhdVvnv37o6/PTw88Pb2rrXZEYCnp6fj9thjjwEwYcIEHn74YYYPH85rr71Wo6ndvn37zmoaHh8ff1HxASQlJTFmzBiio6Px9vYmKioKgLS0tBrl+vTp4/i7uLiY5ORkHnrooRpx//Of/3TEuG/fPkdTqouJ7+6772b27NmA/Xh/88033H333Y7HMzMzGTduHDExMfj4+ODt7U1RUdFZ8V6MHTt28OWXX9bYlxEjRmCz2UhJSeGqq64iMjKS6Oho7r33XmbNmnXeJp1CCOEKRo8ezfHjx/npp58YOXIkK1eupHfv3nz55ZcXva0zr2khISGOprlnLqvrGgf268KgQYNqLBs0aBBJSUnnbAL9Zy3x2vjn56o2Z84cBg0aRGhoKJ6envz9738/K8aoqCi8vLwc98PCwhznKTk5mYqKihrHzN/fn9jYWMf9ffv2YTAYapQJCAggNjaWffv2OZa5u7vTrl07x/2QkBCioqLw9PSssexcr5ELibeysrLG68hoNNKvX78asUDtx+vM17BerycgIIBu3brViA+oEeP06dOJi4sjKCgIT09PPv7444v6znHttddiNBodXR7nzZuHt7c3w4cPd5S5kPMYGRlJUFDQOZ9r69at3HDDDURERODl5cXQoUOBs1+3Z77mqs/3n49ftR07dvCPf/yjxmt63LhxpKenU1JSwm233UZpaSnR0dGMGzeO+fPn/3979x8Tdf3Acfx5mExCCrzUtMBdCOuIMI4RKIHLwSiTWEoxYpqFzDJHklG2CxCy7RQ35kKtroL5I1ht1Qa5wGLrD84YRsdAJ9hcaVutddmKtBppf/Dl8wUO6o6R3+vr67Hdxu7z2fv9/nzex+f9fn/ev4yh8OI/NdJFpiAmJgaTyeTz4nDjF5AxmUxcunRpwnPdbrfxGZl/vX37dk6cOMF9991He3s7cXFxvPfeez6nNygoyOvFwug5TgA5OTn88MMPOJ1OOjs76ezsBIYXJRktNDTU+HtwcBAAp9M5Jt19fX1e8/L9VVBQQH9/P93d3bhcLs6dO0d+fr5x/JFHHsHtdrNnzx5cLhdutxuz2eyV3hFBQcOPu9H3Yfw9GBwcZOPGjWOupaenh9OnTxMdHU1YWBjd3d00NjayYMECKioqWLJkyVWxNZCI/PvNmjWLrKwsysvLcblcrF+/nsrKSsC3Z+SI0WWayWTyq4ybTldj2Tg+LoBjx45RWFjIypUraWlp4fPPP8dut3ul8Url00TxTCXu6Urv+PvlSxpNJhOAEV9TUxPPPPMMRUVFtLW14Xa7efTRRyetc0wkODiYvLw8owPirbfeIj8/31jIztd8nOh6Rvvll1/Izs7muuuu4/Dhw3R1dRn/F/6kd7zBwUGqqqrG/KZ7e3s5ffo0s2bNIjIykv7+fvbt20dISAibNm0iIyNj0ueI/LX/n+UNRa6gOXPmkJ2dzd69eykpKfF6YP74449T3lty8eLFE34fGxtLbGwspaWlFBQUUF9fzwMPPIDVajUqDSPGVwLmzp3rtRiI2+02CiSPx0N/fz9Op5P09HRgeAG1vzN//nwWLlzImTNnxvRyj2a1Wjl48CC//vqr0WPgSyXl5ptvZvny5Rw+fJiLFy+SlZXFvHnzjOMdHR3s27ePlStXAnDu3Dm+//77ScMbeev8zTffEBERAeC1F63NZuPkyZOT5gHANddcQ2ZmJpmZmVRWVhIeHk57ezurV6/+22sSEQkkcXFxvP/++8DYZ2RiYiLg/YycLlar1Wvrt46ODmJjY5kxY4ZfYV1tZeNEXC4XixYtwm63G9999dVXfoURHR3NzJkz6ezsJCoqChheJG5gYMDohbVarQwNDdHZ2cmyZcuA/96juLi4KaV9qqKjowkODqajo4NFixYBwy9Yurq6/pF93Ts6Oli2bBmbNm0yvhs9csNXhYWFZGVlceLECdrb29mxY4dxbDryEeDUqVN4PB4cDgeRkZEAYxZUHO3TTz/1ym+r1TrhuTabjf7+/r+sI4WEhJCTk0NOTg5PPvkkt956K729vdhsNr+v42qnRrrIFO3du5e0tDTuvPNOqqurSUhIYGhoiKNHj7J///5Jhwv56+LFi5SVlZGXl4fFYuHrr7+mq6uLNWvWAFBSUkJaWhq7d+8mNzeX1tZWPvzwwzFhrFixgpqaGg4cOMDSpUs5dOgQfX19RkUsIiICs9nMa6+9xoIFCzh79izbtm3zKX1VVVWUlJRw/fXXc8899/Dbb79x/Phxzp8/z9NPP83DDz+M3W6nuLiY559/ni+//JLdu3f7FHZhYSGVlZX8/vvv1NbWjjkWExNjrF76008/UVZWRkhIyKRhLV68mMjISLZv385LL73EwMCA18q1zz33HKmpqWzevJkNGzYQGhrKyZMnOXr0KHV1dbS0tHDmzBkyMjKIiIjgyJEjXLp0acxwQBGRQOPxeHjwwQd57LHHSEhIICwsjOPHj7Nr1y5yc3OB4cp1amoqDocDi8XCd999xwsvvPCPpGfr1q0kJyfz4osvkp+fz7Fjx6irq/Na/fyvXM1l43gxMTGcPXuWpqYmkpOT+eCDD/waUQDDU+2KioooKyvDbDYzb9487Ha7McJiJJ7c3FyKi4t59dVXCQsLY9u2bdx0003G7+hKCQ0N5YknnqCsrIw5c+YQFRXFrl27uHDhAkVFRdMeX0xMDAcOHKC1tRWLxcLBgwfp6urCYrH4FU5GRgY33ngjhYWFWCyWMVMHpiMfAaKioggODubll1/m8ccfp6+vb9I91KurqzGbzcyfPx+73c4NN9zgtePBiIqKClatWkVUVBR5eXkEBQXR09NDX18fO3bsoKGhgT/++IOUlBSuvfZaDh06REhIiPESRfyj4e4iU3TLLbfQ3d3N3XffzdatW4mPjycrK4uPP/6Y/fv3T1s8M2bMwOPxsG7dOmJjY3nooYe49957qaqqAiA1NRWn08mePXtYsmQJbW1tXhWr7OxsysvLefbZZ0lOTubnn39m3bp1xvGgoCCampr47LPPiI+Pp7S0lJqaGp/St2HDBl5//XXq6+u5/fbbWb58OQ0NDUbBNXv2bJqbm+nt7SUxMRG73c7OnTt9CjsvLw+Px8OFCxe8Co033niD8+fPY7PZWLt2rbENy2RmzpxJY2Mjp06dIiEhgZ07d455gw3Dc9Q++eQTBgYGSE9PJzExkYqKChYuXAhAeHg47777LitWrMBqtfLKK6/Q2NjIbbfd5tP1iIj8L8yePZuUlBRqa2vJyMggPj6e8vJyiouLqaurM8578803GRoaIikpiS1btng9I6eLzWbj7bffpqmpifj4eCoqKqiurmb9+vU+h3E1l43j3X///ZSWlrJ582buuOMOXC4X5eXlfodTU1NDeno6OTk5ZGZmctddd5GUlDTmnPr6epKSkli1ahVLly7l8uXLHDly5IrtCz+aw+FgzZo1rF27FpvNxhdffEFra6sxWm46bdy4kdWrV5Ofn09KSgoej2dMr7qvTCYTBQUF9PT0eI2ymK58nDt3Lg0NDbzzzjvExcXhcDgmfQHkcDh46qmnSEpK4ttvv6W5uZng4OAJz83OzqalpYW2tjaSk5NJTU2ltrbWaISHh4fjdDpJS0sjISGBjz76iObmZsxms9/XIGC67O8KWCIS8BoaGtiyZYvmSouIiPyHykYR+bdQT7qIiIiIiIhIgFAjXURERERERCRAaLi7iIiIiIiISIBQT7qIiIiIiIhIgFAjXURERERERCRAqJEuIiIiIiIiEiDUSBcREREREREJEGqki4iIiIiIiAQINdJFREREREREAoQa6SIiIiIiIiIBQo10ERERERERkQChRrqIiIiIiIhIgPgT1FBBVDx4ehUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x = np.arange(0.01, 20, .01)\n",
"dfvals = [1, 2, 4, 8]\n",
"\n",
"x_df = [(i, j) for i in x for j in dfvals]\n",
"\n",
"chisqDf = pd.DataFrame(x_df, columns = ['x', 'df'])\n",
"chisqDf['chisq'] = chi2.pdf(chisqDf.x, chisqDf.df)\n",
"for df in dfvals:\n",
" chisqDf.loc[chisqDf.df == df, 'chisq'] = chisqDf[chisqDf.df == df]['chisq'] / chisqDf[chisqDf.df == df]['chisq'].max()\n",
"fig, ax = plt.subplots(1, 2, figsize=(12,6))\n",
"\n",
"sns.lineplot(data=chisqDf, x='x', y='chisq', style='df', ax=ax[0])\n",
"ax[0].set_xlabel(\"Chi-squared values\")\n",
"ax[0].set_ylabel('Density')\n",
"\n",
"\n",
"# simulate 50,000 sums of 8 standard normal random variables and compare\n",
"# to theoretical chi-squared distribution\n",
"\n",
"# create a matrix with 50k columns of 8 rows of squared normal random variables\n",
"dSum = (rng.normal(size=(50000, 8)) ** 2).sum(axis=1)\n",
"\n",
"sns.histplot(dSum, ax=ax[1], stat='density')\n",
"ax[1].set_ylabel(\"Density\")\n",
"ax[1].set_xlabel(\"Sum of squared random normal variables\")\n",
"\n",
"csDf = pd.DataFrame({'x': np.arange(0.01, 30, 0.01)})\n",
"csDf['chisq'] = chi2.pdf(csDf.x, 8)\n",
"_ =sns.lineplot(data=csDf, x='x', y='chisq', ax=ax[1], color='black')\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "7df156ae",
"metadata": {},
"source": [
"## Table 12.2"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "271a20c6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"search_conducted False True All\n",
"driver_race \n",
"Black 36244 1219 37463\n",
"White 239241 3108 242349\n",
"All 275485 4327 279812\n",
"\n",
"Normalized:\n",
"search_conducted False True All\n",
"driver_race \n",
"Black 0.129530 0.004356 0.133886\n",
"White 0.855006 0.011107 0.866114\n",
"All 0.984536 0.015464 1.000000\n"
]
}
],
"source": [
"stopData = pd.read_csv('https://raw.githubusercontent.com/statsthinking21/statsthinking21-figures-data/main/CT_data_cleaned.csv')\n",
"table = pd.crosstab(stopData['driver_race'], stopData['search_conducted'], margins=True)\n",
"print(table)\n",
"n = stopData.shape[0]\n",
"print('')\n",
"print('Normalized:')\n",
"table_normalized = pd.crosstab(stopData['driver_race'], stopData['search_conducted'], margins=True, normalize='all')\n",
"print(table_normalized)"
]
},
{
"cell_type": "markdown",
"id": "6baec10f",
"metadata": {},
"source": [
"## Chi-squared test result"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4f372548",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.9001204194035138e-182"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expected = np.outer(table_normalized.values[:2, 2], table_normalized.values[2, :2]) * n\n",
"actual = pd.crosstab(stopData['driver_race'], stopData['search_conducted'], margins=False)\n",
"diff = expected - actual\n",
"stdSqDiff = diff **2 / expected\n",
"chisq = stdSqDiff.sum().sum()\n",
"pval = chi2.pdf(chisq, 1)\n",
"pval"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4be02b50",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" test | \n",
" lambda | \n",
" chi2 | \n",
" dof | \n",
" pval | \n",
" cramer | \n",
" power | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" pearson | \n",
" 1.0 | \n",
" 827.005515 | \n",
" 1.0 | \n",
" 7.255988e-182 | \n",
" 0.054365 | \n",
" 1.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" test lambda chi2 dof pval cramer power\n",
"0 pearson 1.0 827.005515 1.0 7.255988e-182 0.054365 1.0"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"_, _, stats = pg.chi2_independence(stopData, 'driver_race', 'search_conducted')\n",
"stats[stats.test=='pearson']"
]
},
{
"cell_type": "markdown",
"id": "5bd76f4d",
"metadata": {},
"source": [
"## Table 12.3"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7b15865a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" search_conducted | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" driver_race | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Black | \n",
" 3.330746 | \n",
" -26.576456 | \n",
"
\n",
" \n",
" White | \n",
" -1.309550 | \n",
" 10.449072 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"search_conducted False True \n",
"driver_race \n",
"Black 3.330746 -26.576456\n",
"White -1.309550 10.449072"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summaryDfResids = diff/ np.sqrt(expected)\n",
"summaryDfResids"
]
},
{
"cell_type": "markdown",
"id": "783eafc1",
"metadata": {},
"source": [
"## Bayes factor"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "738313c3",
"metadata": {
"Rmd_chunk_options": "echo=FALSE",
"jupyter": {
"output_hidden": false
},
"kernel": "R",
"tags": [
"report_output"
]
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"R[write to console]: Error in library(BayesFactor) : there is no package called ‘BayesFactor’\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Error in library(BayesFactor) : there is no package called ‘BayesFactor’\n"
]
},
{
"ename": "RInterpreterError",
"evalue": "Failed to parse and evaluate line '\\n# compute Bayes factor\\n# using independent multinomial sampling plan in which row totals (driver race)\\n# are fixed\\nlibrary(BayesFactor)\\nbf <-\\n contingencyTableBF(as.matrix(actual),\\n sampleType = \"indepMulti\",\\n fixedMargin = \"cols\"\\n)\\nbf\\n'.\nR error message: 'Error in library(BayesFactor) : there is no package called ‘BayesFactor’'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRRuntimeError\u001b[0m Traceback (most recent call last)",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/ipython/rmagic.py:331\u001b[0m, in \u001b[0;36mRMagics.eval\u001b[0;34m(self, code)\u001b[0m\n\u001b[1;32m 329\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 330\u001b[0m \u001b[38;5;66;03m# Need the newline in case the last line in code is a comment.\u001b[39;00m\n\u001b[0;32m--> 331\u001b[0m value, visible \u001b[38;5;241m=\u001b[39m \u001b[43mro\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mr\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mwithVisible(\u001b[39;49m\u001b[38;5;124;43m{\u001b[39;49m\u001b[38;5;132;43;01m%s\u001b[39;49;00m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m})\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m%\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcode\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 332\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ri\u001b[38;5;241m.\u001b[39membedded\u001b[38;5;241m.\u001b[39mRRuntimeError, \u001b[38;5;167;01mValueError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m exception:\n\u001b[1;32m 333\u001b[0m \u001b[38;5;66;03m# Otherwise next return seems to have copy of error.\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/robjects/__init__.py:459\u001b[0m, in \u001b[0;36mR.__call__\u001b[0;34m(self, string)\u001b[0m\n\u001b[1;32m 458\u001b[0m p \u001b[38;5;241m=\u001b[39m rinterface\u001b[38;5;241m.\u001b[39mparse(string)\n\u001b[0;32m--> 459\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meval\u001b[49m\u001b[43m(\u001b[49m\u001b[43mp\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 460\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m conversion\u001b[38;5;241m.\u001b[39mget_conversion()\u001b[38;5;241m.\u001b[39mrpy2py(res)\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/robjects/functions.py:204\u001b[0m, in \u001b[0;36mSignatureTranslatedFunction.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 203\u001b[0m kwargs[r_k] \u001b[38;5;241m=\u001b[39m v\n\u001b[0;32m--> 204\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mSignatureTranslatedFunction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/robjects/functions.py:127\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 126\u001b[0m new_kwargs[k] \u001b[38;5;241m=\u001b[39m cv\u001b[38;5;241m.\u001b[39mpy2rpy(v)\n\u001b[0;32m--> 127\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mFunction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__call__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mnew_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mnew_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 128\u001b[0m res \u001b[38;5;241m=\u001b[39m cv\u001b[38;5;241m.\u001b[39mrpy2py(res)\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/rinterface_lib/conversion.py:45\u001b[0m, in \u001b[0;36m_cdata_res_to_rinterface.._\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m---> 45\u001b[0m cdata \u001b[38;5;241m=\u001b[39m \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;66;03m# TODO: test cdata is of the expected CType\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/rinterface.py:817\u001b[0m, in \u001b[0;36mSexpClosure.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m error_occured[\u001b[38;5;241m0\u001b[39m]:\n\u001b[0;32m--> 817\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m embedded\u001b[38;5;241m.\u001b[39mRRuntimeError(_rinterface\u001b[38;5;241m.\u001b[39m_geterrmessage())\n\u001b[1;32m 818\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res\n",
"\u001b[0;31mRRuntimeError\u001b[0m: Error in library(BayesFactor) : there is no package called ‘BayesFactor’\n",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mRInterpreterError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mget_ipython\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_cell_magic\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mR\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m-i actual\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m# compute Bayes factor\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m# using independent multinomial sampling plan in which row totals (driver race)\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m# are fixed\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43mlibrary(BayesFactor)\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43mbf <-\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m contingencyTableBF(as.matrix(actual),\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m sampleType = \u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mindepMulti\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m,\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m fixedMargin = \u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcols\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43mbf\u001b[39;49m\u001b[38;5;130;43;01m\\n\u001b[39;49;00m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/IPython/core/interactiveshell.py:2422\u001b[0m, in \u001b[0;36mInteractiveShell.run_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2420\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuiltin_trap:\n\u001b[1;32m 2421\u001b[0m args \u001b[38;5;241m=\u001b[39m (magic_arg_s, cell)\n\u001b[0;32m-> 2422\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2423\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/ipython/rmagic.py:870\u001b[0m, in \u001b[0;36mRMagics.R\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 868\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m e\u001b[38;5;241m.\u001b[39mstdout\u001b[38;5;241m.\u001b[39mendswith(e\u001b[38;5;241m.\u001b[39merr):\n\u001b[1;32m 869\u001b[0m \u001b[38;5;28mprint\u001b[39m(e\u001b[38;5;241m.\u001b[39merr)\n\u001b[0;32m--> 870\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 872\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpng\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msvg\u001b[39m\u001b[38;5;124m'\u001b[39m]:\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/ipython/rmagic.py:850\u001b[0m, in \u001b[0;36mRMagics.R\u001b[0;34m(self, line, cell, local_ns)\u001b[0m\n\u001b[1;32m 848\u001b[0m return_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 849\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 850\u001b[0m text_result, result, visible \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meval\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcode\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 851\u001b[0m text_output \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m text_result\n\u001b[1;32m 852\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m visible:\n",
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/site-packages/rpy2/ipython/rmagic.py:335\u001b[0m, in \u001b[0;36mRMagics.eval\u001b[0;34m(self, code)\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ri\u001b[38;5;241m.\u001b[39membedded\u001b[38;5;241m.\u001b[39mRRuntimeError, \u001b[38;5;167;01mValueError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m exception:\n\u001b[1;32m 333\u001b[0m \u001b[38;5;66;03m# Otherwise next return seems to have copy of error.\u001b[39;00m\n\u001b[1;32m 334\u001b[0m warning_or_other_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflush()\n\u001b[0;32m--> 335\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m RInterpreterError(code, \u001b[38;5;28mstr\u001b[39m(exception),\n\u001b[1;32m 336\u001b[0m warning_or_other_msg)\n\u001b[1;32m 337\u001b[0m text_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflush()\n\u001b[1;32m 338\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m text_output, value, visible[\u001b[38;5;241m0\u001b[39m]\n",
"\u001b[0;31mRInterpreterError\u001b[0m: Failed to parse and evaluate line '\\n# compute Bayes factor\\n# using independent multinomial sampling plan in which row totals (driver race)\\n# are fixed\\nlibrary(BayesFactor)\\nbf <-\\n contingencyTableBF(as.matrix(actual),\\n sampleType = \"indepMulti\",\\n fixedMargin = \"cols\"\\n)\\nbf\\n'.\nR error message: 'Error in library(BayesFactor) : there is no package called ‘BayesFactor’'"
]
}
],
"source": [
"%%R -i actual\n",
"\n",
"# compute Bayes factor\n",
"# using independent multinomial sampling plan in which row totals (driver race)\n",
"# are fixed\n",
"library(BayesFactor)\n",
"bf <-\n",
" contingencyTableBF(as.matrix(actual),\n",
" sampleType = \"indepMulti\",\n",
" fixedMargin = \"cols\"\n",
")\n",
"bf"
]
},
{
"cell_type": "markdown",
"id": "aec24c2c",
"metadata": {},
"source": [
"## Table 12.4"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e91ed4f4",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'NHANES' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m NHANES_sleep \u001b[38;5;241m=\u001b[39m \u001b[43mNHANES\u001b[49m\u001b[38;5;241m.\u001b[39mquery(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAge > 17\u001b[39m\u001b[38;5;124m'\u001b[39m)\u001b[38;5;241m.\u001b[39mdropna(subset\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSleepTrouble\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDepressed\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 2\u001b[0m depressedSleepTrouble \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mcrosstab( NHANES_sleep\u001b[38;5;241m.\u001b[39mDepressed, NHANES_sleep\u001b[38;5;241m.\u001b[39mSleepTrouble)\n\u001b[1;32m 3\u001b[0m depressedSleepTrouble\n",
"\u001b[0;31mNameError\u001b[0m: name 'NHANES' is not defined"
]
}
],
"source": [
"NHANES_sleep = NHANES.query('Age > 17').dropna(subset=['SleepTrouble', 'Depressed'])\n",
"depressedSleepTrouble = pd.crosstab( NHANES_sleep.Depressed, NHANES_sleep.SleepTrouble)\n",
"depressedSleepTrouble"
]
},
{
"cell_type": "markdown",
"id": "0f89e55a",
"metadata": {},
"source": [
"## Chi-squared result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abaf176d",
"metadata": {},
"outputs": [],
"source": [
"_, _, stats = pg.chi2_independence(NHANES_sleep, 'SleepTrouble', 'Depressed')\n",
"stats[stats.test=='pearson']"
]
},
{
"cell_type": "markdown",
"id": "50db1299",
"metadata": {},
"source": [
"## Bayes factor"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0eae5032",
"metadata": {
"Rmd_chunk_options": "echo=FALSE",
"jupyter": {
"output_hidden": false
},
"kernel": "R",
"tags": [
"report_output"
]
},
"outputs": [],
"source": [
"%%R -i depressedSleepTrouble\n",
"\n",
"# compute bayes factor, using a joint multinomial sampling plan\n",
"bf <-\n",
" contingencyTableBF(\n",
" as.matrix(depressedSleepTrouble),\n",
" sampleType = \"jointMulti\"\n",
" )\n",
"bf"
]
}
],
"metadata": {
"Rmd_chunk_options": {
"output": {
"bookdown::gitbook": {
"includes": {
"in_header": "google_analytics.html"
},
"lib_dir": "book_assets"
},
"html_document": "default",
"pdf_document": "default"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
},
"sos": {
"kernels": [
[
"SoS",
"sos",
"",
""
],
[
"R",
"ir",
"",
""
],
[
"Markdown",
"markdown",
"",
""
]
]
}
},
"nbformat": 4,
"nbformat_minor": 5
}